Cauchy-Schwarz Iv « vl < llull +IIvil. Triangle Inequality Il + vIl < llull + Ilvil. Distance d(u,v) = llu = vil. cos@ = T4 llu+vII* = llull® +IIvlI* iff u is orthoganol to v.

proj.V = (¥ )u = 24u. Where p is a point on the line, n; is a normal vector to the line, and d is a direction vector on the line: Normal Form:

leell*

nyeX=np ax+byy+ciz=d

line— plane— n «x = n - p. General Form: line—

Ny eX=nypa axx+bry+crz=d>
Parametric Form (Just expand the Vector form into three equations. Homogeneous system - Ax = 0. Distance from point B = (x¢,y0,z0) to plain ax+ by + cz = d is

w Unique infinite solution(s) — consistent, No solutions —~inconsistent. A matrix is in row echelon form if it satisfies the following properties: Any row consisting
Ja?+b+c?

entirely of zeros is at the bottom. In each nonzero row, the first nonzero entry is in a column to the left of any leading entries below it. The rank of a matrix is the number
of nonzero rows in its row echelon form. Rank Theorem # of free variables v = n — Rank(A) where n is the number of variables. reduced row echelon form: 1)lt is in row
echelon form. 2) The leading entry in each nonzero row is a 1. 3) Each column containing a leading 1 has zeros everywhere else. 2.6: Let vy, v,,...,v, be column
vectors in R" and let A be the n x m matrix [v,...v,] with these vectors as its cols. Then v,,...,v,, are lin. dep. if and only if the homogeneous linear system [Al0] has a
nontrivial solution. 2.7: Given [v;...v,]" then v,,...,v,, are linearly depedent if and only if rank(A) < m. Symmetric -~ A = A”. Algebraic Properties of Matricies include:
(+,scalary) Commutativity, Asscociativity, Identity, +inverse, distributivity Transpose Properties Theorem 3.4: (A7)" = A, (A+B)” = A" + B”, (kA)T = k(A"), (AB)” = B'A",
(A")" = (AT)" Theorem 3.5: If A is a square matrix, then A + AT is a symmetric matrix. For any matrix A, AA” and A”A are symmetric matrices. T 3.6: Inverses of square
matrices are unique. T 3.7: A invertable — Ax = b has a unique solution. T 3.9: A invertable -~ A~! invertable. (cA)™ = LA™, (AB)™' = B'A™'. (47")™ = 4)".

A = @AD" AT = (AT (A x...xA,)” = A x...xA7'. T 3.10: Let E be an elementary matrix, then performing that operation on A is the same as EA. T 3.11: Each
elementary matrix is invertible and its inverse is an elementary matrix of the same type. Def: Let A be a square matrix. A factorization of A = LU, where L is unit lower
triangular and U is upper triangular, is called an LU factorization. Consider Ax = b, and then Ax = LUx = L(Ux) = b. Let LU = y. Now solve Ly = b, and then Ux = y. Find
LU factorization: Row reduce to ref form using elementary (in order top to bottom column by column) row ops of the form R, — kR..i. Then place & in the identity matrix
at row,col. T 3.16: If A is an invertable matrix that has an LU factorization, then L and U are unique. Def: A subspace of R" is any collection S of vectors in R" such that
(1) 0 € S, (2) closed under addition and (3) scalar multiplication. T 3.19: For vi_1x € R", span(vi,...,v:) is a subspace of R". Def: row space of A is the subspace row(A)
spanned by the rows of A. Def: col space of A is the subspace col(4) spanned by the rows of A. T 3.20: Let B be any matrix that is row equivalent to a matrix A. Then
row(A) = row(B). (Two matrices are row equivalent iff they can be reduced to the same row eschlon form.) T 3.21: Let A be an m x n matrix and let N be the set of
solutions to Ax = 0. Then N is a subspace called the null space. Def: A basis for a subspace S of R" is a set of vectors in S that (1) spans S and (2) is Lin. Ind.. To find
the row(A),col(A),null(A): (1) find R = rref(A). (2) Use the nonzero row vectors of R containing leading 1s to form a basis for row(A). (3) Use the column vectors of A with
leading 1s in R as a basis for col(A). (4) use Rx = 0 to find the nuli(A). T 3.23: Any two bases for S have the same number of vectors. Def: dim(S) is the number of
vectors in the basis for S. dim(row(A)) = dim(col(A)) = rank(A) = rank(A"). nullity(A) = dim(null(A)). Let A be an m x n matrix, then rank(A) + nullity(A) = n. T 3.28:

A :mxn. (1) rank(ATA) = rank(A). (2) A"A is invertable iff rank(A) = n. Def: Let S be a subspace of R” and let B={vi,..., v} be a basis for S. Letv € S, v = cv; +...+cxvi
where vg = [c, ck]T is called the coordinate vector of v with respect to B. Def: T : R" - R" is a linear tranformation if T(u + v) = T(u) + T(v) and T(cu) = cT(u).

[T] = [T(e))l...|T[e,]]- (So T)(v) = S(T(v)) = [S][T]v. Two transformations are considered inverses if So T = T S = I,. For these we have [T™'] = [T]"'. LetAbe annxn
matrix. A scalar A is called an eigenvalue of A if there is a nonzero vector x such that Ax = Ax. Such vectors e, are called eigenvectors. The collection of all eigenvectors
associated with a 1 is called the eigenspace denoted E; = span({e,}) or E;, = {t-e;}. T 4.2: The determinant of a triangular matrix is the product of the entries on its
main diagonal. T 4.3: Let A be an n x n matrix. (1) if A has a zero row (column) then det(A) = 0. (2) If B is obtained by interchanging two rows (or cols) then

det(B) = —det(A). (3) If A has two identical rows (or cols) det(A) = 0. (4) If B is obtained by multiplying a row of A by k then det(B) = kdet(A). (5) If A, B, C are identical
except that the i row (column) of C is the sum of the i rows (cols) of A and B, then det(C) = det(A) + det(B). If B is obtained by adding a multiple of one row (column) of
A to another row (column) then det(B) = det(A). T 4.8: A,B : nx n. Then det(AB) = det(A)det(B). T 4.7: A : n x n. det(kA) = k"det(A). T 4.9: If A is invertable,

det(A™) = 5. T 4.10: det(A) = det(A”). T 4.11: A 2 nx ninvertable and Ax = b - x; = %X)” where A;(b) means replace the i column by b. Def: The adjoint is the

transpose of the matrix of cofactors (the det(submatrix)) So C,, = det[azz sl iam ...a,,,,]. det(A — AI) = 0 (Characteristic Polynomial). To find the eigenvectors find the
null space of A — Al also called the eigenspace E;. Find the basis for the space. Define algebraic multiplicity to be its multiplicity as a root of the characteristic
equation. Define geometric multiplicity of an eigenvalue to be dim(E,). T 4.15 The eigenvalues of a triangular matrix are the entries on its main diagonal. T 4.16 A
square matrix A is invertable iff 0 is not an eighenvalue of A. T 4.17: Let A be an n x n matrix then: A is invertable — Ax = b has a unique solution — Ax = 0 only has a
trivial solution <« rref({A) = I < A is the product of elementary matrices < rank(A) = n < nullity(A) = 0 — the column vectors of A are Lin. Ind. < the column vectors
span R" «— the column vectors are a basis for R” < rows(A) are Lin. Ind. < rows(A) span R" « rows(A) form a basis for R" < det(A) # 0 < 0 is not an eigenvalue of
A. T 4.18: Given A € M,.., with eigenvalue 1 and eigenvector x, then (a) For any positive integer n, A" is an eigenvalue of A" with corresponding eigenvector x (b) If A is
invertable then 1/ is an eigenvalue of A~! with corresponding eigenvector x (c) For any integer n, A" is an eigenvalue of A" with eigenvector= x. T4.19: A € M,,, with
eigenvectors vi,...v,. If x € R" that can be expressed as x = ¢,vi +...+c.va, then for any integer k, A*x = ciA%v, +...+cnAkv,. 4.4. D: A is similar to B if ther is an
invertable matrix P such that P~'AP = B denoted A~B. Note P is not unique, let A = I. ~ is an equivalence relation (A~A,A~B - B~A,A~B and B~C —» A~C). T4.22: If A~B
then (a) det(A) = det(B), (b) A is invertable iff B is invertable, (c) rank(A) = rank(B), (d) A and B have the same characteristic polynomial, (e) A and B have the same
eigenvalues. D: An n x n matrix A is diagonalizable if there is a diagonal matrix D such that A~D or P'AP = D. T4.23 A is diagonalizable if and only if A has » Lin. Ind.
eigenvectors. Where P is made up of the Lin. Ind. eigenvectors and the entries of D are made up of the corresponding eigenvalues. T4.24: If 1,,...,A, are
distinct eigenvalues of A and B; is the basis for the eigenspace E;,, then B = B, U...UB is Lin. Ind.. T4.25: If A, has n distict eigenvalues, then A is diagonalizable.
L4.26: If A,.., then for each eigenvalue, the geometric multiplicity < algebraic multiplicity. T4.17: A,.. is diagonalizable — B in (T4.24) contains n vectors. algebraic
multiplicity = geometric multiplicity for each eigenvalue. 5.1: D Orthogonal set if v; - v; = 0 Vi = j. T5.1: If {vy,... v} is an orthogonal set, then the vectors are Lin. Ind..
D: An orthogonal basis for a subspace is also an orthogonal set. T5.2: Let {v; «} be an orthogonal basis for W.w € W - w = ¢1vy +...+cxvi Where ¢; (w « vi)/(vi « v;)
(projection). D: An orthonormal set is an orthogonal set of unit vectors. An orthonormal basis for a subspace W of R" is a basis of W that is an orthonormal set. T5.3: Let
{q:.x} be an orthonormal basis for W. Thenw € W > w = (w « q1)q: +...+(w « g« )qx is unique. T5.4: The cols of an m x n matrix Q form an orthonormal set iff

070 = I,. D:An n x n matrix whose cols form an orthonormal set is called an orthogonal matrix - Q! = Q7. T5.6: Q is orthogonal < lIQx|l = lix|]| & Qx + Qy = x - y. T5.7:
Q orthogonal matrix - rows form an orthonormal set. T5.8: Let O be an orthogonal matrix then (a) Q' is orthogonal. (b) det(Q) = £1. (c) If A is an eigenvalue of Q then
Al = 1. (d) If 0, and Q- are orthogonal n x n matrices, then so is Q,0,. D Let W be a subspace of R". We say that a vector v in R" is orthogonal to W if v is orthogonal to
every vector in W. The set of all vectors that are orthogonal to W is called the ortogonal complement of W, denoted W*. That is W* = {v eR":v-w=0forallwe W}.
T5.10: (row(A))* = null(A) and (col(A))* = null(AT). D: projw(v) = proj., (v) +...+proj..(v). Then perpw(v) = v —projw(v). T5.11: v = w + w* where w and w* are unique.
T5.13: If Wis a subspace of R" then dimW + dim W* = n > rank(A) + nullity(A) = n. T5.15: Gram-Schmidt process: Let {xi,...,x,} be a basis for a subspace W of R" and
define the following: vi = x1, v« = x¢ — Zf;‘((v,- «x;)/(vi +v;))v; foreach 1 < i < n. The the set {vi,...,v,} is an orthogonal basis for W. D: A square matrix A is
orthogonally diagonalizable if there exists an orthogonal matrix 0 and a diagonal matrix D such that Q7AQ = D. T5.17 If A is diagonalizable, then A is symmetric:
QTAQ =D — A = QDQ7, AT = (QDQ™)" = (Q")'DTQ" = QDQT = A. T5.18If A is a real symmetric matrix, then the eigenvalues of A are real. T5.19: If A is symmetric, then
any two eigenvectors corresponding to distinct eigenvalues of A are orthogonal. T5.20 (Spectral Theorem) Let A be an n x n real matrix. Then A is symmetric if and only
if it is orthogonally diagonalizable. (Spectral Decomposition): A = ODQ” = [g1...q.]21..10" = A1q1q} +...+A.qaq?. 6.1: A vector space is a field (V,+,-) (1)+closure,
(2)+commutativity (3)+associativity (4)30 e V (5)additive inverses u + (-u) = 0 (6)-closure (7) c(u + V) = cii + cv (8)(c + d)ui = cii + dii (9) c(du) = (cd)u (10) 1u = u. D:
Vector subspace has the same def= closure under addition and scalar multiplication. 6.2 D: linear dependence: Given {v, .} then for ¢,...c, at least one of which is
non-zero c¢;v; +...+cvi = 0 —lin. dep.. D: A set S of vectors in a vector space Vis lin. dep. if it contains finitely many lin. dep. vectors. T6.6: [u + v], = [u], + [v],,

[cu]y = clul,. T6.7: Let B = {v,.,} be a basis for a vector space V and let u,,...,u; be vectors in V. Then {u,,...,u;} is Lin. Ind. in Vif and only if {[u,],,...,[u«],} is Lin.
Ind. in R". T6.10: Let V be a vector space with dimV = n. Then (a) Any Lin. Ind. set in V contains at most n vectors. (b) Any spanning set for V contains at least n vectors.
(c) Any Lin. Ind. set of exactly n vectors in Vis a basis for V. (d) Any spanning set for V consisting of exactly n vectors is a basis for V. (e) Any linearly indpendent setin V
can be extended to a basis for V. (f) Any spanning set for V can be reduced to a basis for V. 6.3: Let B ={u;..}, C ={vi..} be bases for a vector space V. The n x n matrix
whose cols are the coordinate vectors [u:].,...,[u.] . of vectors in B with respect to C is denoted by Pc.s and is called the change of basis matrix from B to C:

Peos = [ui] - os[Ual e () Peeslx], = [x], in V. (D) Pc.s is the unique matrix P with the property that P[x], = [x],. for all x € V. (c) Pc.s is invertible and (Pc.s)™" = Pg.c.
Gauss-Jordon Method: Let C = P¢c, and B = P¢.p. Then [CIB] - [lIPc5]. D: Let T : V -~ W be a linear transformation. ker(T) = {v e V : T(v) = 0},

range(T) = {T(v) : v € V}, T6.18 ker(T) is a subspace, range(T) is a subspace, D: rank(T) = dim(range(T)), nullity(T) = dim(ker(7)), T6.19: rank(T) + nullity(T) = dim(V).
D: A linear transformation 7 : V - Wis called 1-to-1 if 7 maps distinct vectors in V to distinct vectors in W. If the range(T) = W, then T'is called onto. T is 1-to-1 if Vu,v
u+v=>Twu)+TW)orT(u) =TW) > u=v.Tisontoif Yw e W, Iv € Vs.t. w = T(v). T6.20: A linear transformation 7 : V - Wis 1-to-1 iff ker(T) = {0}. T6.21: Let
dim(V) = dim(W) = n. Then alin. trans. T : V > Wis 1-to-1 iff it is onto. Let T : V - W be a 1-to-1 linear transformation, If S is a set of Lin. Ind. vectors in V, then T(S) is a
set of Lin. Ind. vectors in W. (do it with dimV = dimW = n, and IS| = n, you get a basis to a basis.) T6.24: A Lin. Trans. is invertible iff it is 1-to-1 and onto. D: A Lin Trans.
is called a isomorphism if it is 1-to-1 and onto. If 37 : V - W, 1-to-1, onto, then V is isomorphic to W denoted V = W. T6.25 V is isomorphic to W iff dimV = dim W.

. plane- ax + bx + ¢z = d. Vector Form: line- x = p + td. plane - x = p + su + tv.



