THE DEVELOPMENT OF PROJECT GRADE-UP

by

Dalin Williams

A PROJECT

Presented to the Faculty of
The School of Computing at the Southern Adventist University
In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Anderson

Collegedale, Tennessee

November, 2015

THE DEVELOPMENT OF PROJECT GRADE-UP

Dalin Williams, M.S.

Southern Adventist University, 2015
Adyviser: Scot Anderson, Ph.D.

The university classroom has greatly evolved from a simple syllabus and in class
discussion to the modern online documentation and virtual classrooms. These
developments have changed the way students review their grades and balance their
workloads. With the plethora of new technologies, students are often burdened
with a full school schedule, work, and social events, with few tools to help them
effectively understand their grades or manage their time. Current solutions
addressing this issue do not present data in an organized way that allows the
student to easily comprehend their past performance or up coming work load.
Our solution builds upon the Moodle system by adding visual, progress-specific
information that is comprehensible at a glance. This in turn allows the student to

answer the following questions:
1. What have I completed, and what do I have left to complete?
2. What is my current grade and projected grade at my current pace?

3. Given what I've done so far what is the best possible grade I could get if I

ace the remaining work?
4. What if I stopped now, what would my grade be?
5. How am I doing compared to the average in this class?

6. If I got a particular grade(s) on a specific assignment(s) how would that

change the answers to the preceding questions?

7. Where is the work left concentrated in the temporal domain? ILe. when

should I start working on the items left to complete in my course(s)?

COPYRIGHT
(© 2015, Dalin Williams

This file may be distributed and/or modified under the conditions of the IAIEX
Project Public License, either version 1.3c of this license or (at your option) any

later version. The latest version of this license is in:
http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of IXIgXversion 2006/05/20 or

later.

http://www.latex-project.org/lppl.txt

Contents

Contents

List of Figures

List of Tables

1 Introduction

2 Background

2.1 Benefit Analysis: Moodle 0L
2.2 Benefit Analysis: Edmodo
2.3 Benefit Analysis: Blackboard
2.4 Benefit Analysis: Desire2Learn
3 Project
3.1 Architecture oo Lo
3.1.1 DataControl Layer
3.1.2 Model.o
3.1.3 ControlLayer
3.1.4 View Layer

3.2 Charts

vii

vii

ix

xi

10

11

13

viil

3.21 Burnup-Chart
3.22 Heatmap-Chart
33 Summary

4 Testing and Evaluation Results

41 UnitTesting,
4.2 Visual Checklist Evaluation
4.3 Side-effectTesting o L.
4.4 Evaluation

5 Conclusion

Bibliography

47

49

List of Figures

2.1

2.2

33

3.4

35

The simplistic nature of Moodle allows for instructors to quickly modify
and update grades on an assignmentlevel.
Moodle’s viewer shows the grades of each student per assignment and
category, allowing teachers the ability to update grades per-student,

allowing for a detailed method of modifying grades.

The Data Control Layer lies “within” Moodle, allowing for an abstrac-
tion which will assist future developers in adapting our solution.
The greater percentage of our code lies in Moodle specific code within
the Data-Control Layer.
The Data Control Layer allows an abstraction of Moodle’s data layer,
allowing for a more general interface of our Model Layer with the rest
oftheplug-in
The Model Layer consists of a combination of a intermediate database
and the associated classes. The classes that exist in this Layer are
modeled after their respective tables.
The schema of the pgu_tables is such that all objects handled by the
Model can be instantiated without queries to any other table besides

itself. . . .

iX

8

3.7

39

3.10

3.11

3.12

3.13
3.14

4.1

The Control Layer contains a sum of interface code, but the majority of
the code is contained in the update and Abstract Classes (ABC) and its
inherited children..o oo Lo oo
A simple diagram demonstrating a request within PGUs Control Layer.
The View Layer contains all user experience and interactivity func-
tionality. The layers are arranged as to provide maximum modularity
concerning the passing of data as to not overload the client.
This sample process shows the slight difference between the Heatmap
and Burnup SVG Generation processes. Users can only interact with
the Burnup chart SVG directly, hence its shorter logical path.
This is the completed Burnup chart. The projections (far right) represent
the projected grades of the logged-inuser.
Within the ‘"what if” pop-up, the student may enter in a grade to over-
write the grade in the current artifact, or delete the current artifact. Any
and all changes will persist until the user has refreshed the page.
This is a sample Heatmap The purple bar is the users current posi-
tion chronologically in the semester, with the blue intermittent bars
representing individual artifacts.o 00000
This Heatmap spans across two classes within the semester.
This Heatmap has vision assistance enabled, changing the color palate
into one who should be able to recognize these colors better than the

alternative.

Visualization checklist. e

26

27

37
37

xi

List of Tables

2.1

3.1

4.1
4.2

Popular LMS packages. L. 6
The assignment chart showing the weights associated with the assignment. 39

List of features successfully unit tested. 42

List of features successfully unit tested Continued. 43

Chapter 1

Introduction

Students today want a well-defined grade and progress visualization system that
shows their current grade and projected possible grades. In addition, students want
an easily interpreted visualization showing concentrated study times occurring in
a single class or more importantly overlaps across all classes within a semester, as
this would allow them to plan study time more effectively and efficiently.

Institutional attentiveness to education and technology has taken a more domi-
nate role, making the need for an efficient Learning Management Systems (LMS)
the top priority in many educational institutions [1]. This has led to the creation of
a wide selection of systems such as DesirezLearn, Blackboard, and Moodle. These
different LMS satisfy educational institution’s desire for technological innovation,
while providing a common interface for teachers and students, and creating an
organized system for presenting educational material.

The high demand of work, school, and social obligations force students to
pick and choose which classes to work on, and which classes not to. Uninformed
decisions tend to lower the student’s grade, in turn hampering their overall

academic performance [2]. There currently exists two methods of thought to

efficiently address this issue: grade prediction and student self-projection [3].

DesirezLearn [4] provides a method through which students may view a form of
self-projection they call “progress projections.” These projections allow students to
manage their time and class work preference in accordance with time available and
course load. The increased student awareness allows a student to pick and choose
which assignment or course to focus on. These tools, in theory, positively affect
student efficiency and effectiveness in handling the course loads [5]. Desire2Learn’s
solution utilizes predictive analysis technology to give student’s information such
as current success rate per course, success rate per course item, and grade per
term within a given semester. This allows students to keep a running tally on their
progress, while also knowing what areas need more work to improve their grade.

However, this solution does not address the issue of grade projection, and
is only currently available on the Desire2Learn LMS. The solution leaves the
students to guess at what they must do in order to achieve a certain letter grade,
turther preventing students from knowing the approximate difficulty and time
consumption of any given assignment. This deficiency with in the application
prevents the student from maximizing their potential.

Therefore, we believe no application exists which allows a student to visually
review a projected grade based off their current grade and future course work
or visually show concentrated study times required during all their classes and

assignments. We address these issue by our completion of the following goals:

o The creation of a visualization plug-in for the Moodle LMS that shares many
similarities to burn-up charts from software engineering. This visualization
gives students instant feedback and projected information about their current

and potential grade within a class.

e The creation of a visualization plug in for the Moodle LMS that shows
workloads over the course of the semester across individual and all classes.
This visualization gives students a better understanding of current and

upcoming difficulties within their course load.

Giving these additions, a student can visually ascertain their grade trajectory
within classes and their work load over time in all classes in a few seconds. We
believe this will help students to plan ahead and complete work more efficiently
and accurately.

For the remainder of our paper, we first cover the background in Chapter 2.
Chapter 3 and Chapter 4 will cover our project and the evaluation respectively.
Finally, Chapter 5 presents our conclusion on the research found and our future

work on the Master’s Project.

Chapter 2

Background

The push to use technology within the educational intuition systems has led to
the development of many Learning Management Systems (LMS). These systems
allow unprecedented access to information and knowledge not readily available in
the past except upon request. These web-based systems allow instructors, parents,
students, and even colleagues to view data ranging from assignment scores to
overall performance data.

LMS grew out of Content Management Systems (CMS) and hence focus on
content. LMS rarely provide semantic analysis of student success beyond overall
grades and feedback specifically entered by the grader. LMS also rarely provide
planning tools for success beyond the usual due dates and calenders. In this section
we explore the ability of several LMS in these two areas.

There are many LMS solutions available to choose from. Figure 2.1 shows the
most popular software packages [6].

From Figure 2.1, we select Moodle, Edmodo, Blackboard, and Desire2Learn for

analysis, and take into consideration their weakness and strengths as follows:

e Peer/Instructor Feedback

LMS Users
Moodle 73,753,035
Edmodo 20,000,000
ConnectEDU 20,000,000
Blackboard 20,000,000
Cornerstone 11,000,000
Instructure 11,000,000
Desire2Learn 11,000,000
Interactyx 10,000,000
Meridian Knowledge Solutions 8,500,000
SkillSoft 7,000,000
Latitude Learning 3,300,000
SumTotal 2,000,000
Schoology 2,000,000
Litmos 1,260,000
Collaborize Classroom 350,000
Docebo 300,000
DigitalChalk 290,900
Rcampus 270,000
Educadium 40,000

Table 2.1: Popular LMS packages.

e Course Communication

e Student Progress/Tracking

2.1 Benefit Analysis: Moodle

Moodle is an open source CMS, allowing for access to a wider market including
small businesses, government facilities, undergraduate education, and graduate
education. This software flexibility has led to an enormous software supporting

community [7]. Several distinct benefits of Moodle include [7]:

e Ease of Customization: Open-source code can be easily accessed, modified,

and distributed.

e Extensibility: Third party add-ons allow for quick and clean customization.

e Ease of Localization: Since the code is open source, there is no location

specification.

e Flexibility: Customization, hosting, developing, training, and support ser-
vices or jobs may be obtained from a variety of resources, rather than from a

central host.

e Licensing: Open source software eliminates the overhead of these fees, leav-

ing room for spending in the products lifetime costs.

e Modernization: Generally, open source products evolve at a faster rate than
licensed products [7], therefore allowing quicker bug fixes, quicker security

patches and faster upgrades.

e Product Satiability: Generally, there is better protection from a vendors
collapse and the catastrophic consequences that would cause to any facility

using the CMS.

In the following subsection, we explore Moodle according to the aspects listed
above, and therefore gain perspective of how the system functions, and if this

functionality contributes to or contracts from the usability of the CMS.

Instructor Feedback Moodle provides instructors with a general grade man-
agement system. This system, shown in Figure 2.1-2.2 [8], gives instructors an
assignment by assignment and student by student method of assessing grades.
Completed quizzes and exams are automatically entered into the grade-book. How-
ever, if conflict arises, a instructor can go into the grade-book, view the conflicting

assignment, and modify the grade. During this modification period, instructors

Extra M
Name Aggregation (3 Credit b Actions Select
@ grade
(] UofM test site | Sum of grades =l : B All
Mane
(] New Category | Sum of grades = ||] 2 Hxdr=a Al
Mane
Quiz - 0 paints - O 10000 #Axd=a [
&2 Non-graded assignment - O 10000 A4 = 3 r
Categary total - 100.00 3

Figure 2.1: The simplistic nature of Moodle allows for instructors to quickly modify
and update grades on an assignment level.

Defence Against the Dark Artsi-

Autumn term- Spring term(+ Summer term/+
Introduction essay {I Preliminary quizdI Category totaldI Category total I Category total ' Course total I
Surname t First hame 3] 5| A
m Vincent Crabbe B
9.00 (8.00) 92.00 - - (9.00)
Hermione Granger -] o
; 20.00 (10.00) 20.00 - - (20.00)
Cho Chang] o
g 18.00) 18.00 - - (18.00)
[Neville Longbottom & -
| ! 15.00 (5.50) 15.00 - - (15.00)
%
B‘ Luna Lovegood] o
* 18.00 (6.00) 18.00 - - (18.00)
b
" Draco Malfoy]
j 20.00 () 20.00 - - (20.00}
Harry Potter]
=4 3.00 {-) 3.00 ° = (3.00)
L Ginny Weasley] o
L 4.00 (9.00) 4.00 - - (4.00)
Ron Weasley]
r 2.00 (0.00) 2.00 - - (2.00)
Range 0.00-20.00 0.00-10.00 0.00-30.00 0.00-50.00 0.00-20.00 0.00-100.00
Overall average 12.11 12.11

Figure 2.2: Moodle’s viewer shows the grades of each student per assignment and
category, allowing teachers the ability to update grades per-student, allowing for a
detailed method of modifying grades.

can leave communication concerning an assignment. Instructors are also presented
with group communication. This method of communication guarantees that the

alert will be delivered to the student [8].

General Communication Moodle provides students and faculty with five main
methods of communication, email, instant message, forums, blogs, and chat. Out
the five, students and faculty mostly use the instant message and forums commu-
nication methods which are the most popular [9]. This form of communication
allows for students to communicate in a community like fashion, allowing for a
pseudo class chat environment. However, this popularity is negated by the fact
that students and faculty use these methods of communication, on average, only
tifty-percent of the time [10]. We note that the fifty percent that do not use forums

often occurs because course designers do not include this option for the course.

Forum Communication Moodle presents users with a variety or forums ranging
from blog to message board style. Users are also given an option for anonymity
when submitting questions concerning the course or teacher. There is not, however,
a method to anonymously submit responses when replying to a message or a blog
entry. This has led to a marginal decrease in forum response, even when grades
were associated with forum post completion [9]. Moodle currently does not have
a method by which teachers and students may have a live classroom like session
together remotely. This led users of Moodle to collaborate with Google Hangouts
and other cloud and hosting systems. This draws away from the original purpose

of a CMS, to have a succinct modular system to manage courses.

Student Progress/Tracking Moodle gives teachers the grades of each category,

then the totals of these categories and non-category items. This sum is then

10

displayed to the instructor, providing an easy mean by which instructors may view
and edit the grade per assignment and per category. The student view reflects this

as well [8].

2.2 Benefit Analysis: Edmodo

Edmodo presents a unique form of distance education in the popular form of a so-
cial network [11]. This method provides a refined, easy form-based communication
between students and teachers. Built on the Web 2.0 standard [12], Edmodo focus
on the experience of the student, providing a safe environment for the student
to communicate and collaborate with students and faculty. This actually creates
better student work-flow, as well as ensuring the development of proper Internet
behavior. Edmodo has the appearance of popular social sites such as Facebook,
while retaining the monitoring and educational properties of popular CMS such as
blackboard [13]. This faux social media site allows for all course and user profile

materials to be located entirely on the cloud.

Instructor Feedback and Communication Edmodo functions primary through
forum postings [13]. These postings, are similar to Facebook postings, showing
on a live feed combined with assignments, forums, and public/private posts.
These posts support comments similar to social networks. The functionality allows
professors to take individual assignments and comment on each student’s post,
or send them a private message. This allows a more open-ended method to
notify a class of an assignment or any other public event for a student. This
also allows for school announcements to appear in a similar fashion. In many

campuses where Edmodo is in place, the social interface has become the life-line

11

of the campus, tying together events, assignments, and social discussions on one
platform. Pop [14] attributes Edmodo’s popularity with students and overall

success primarily to its social network capabilities.

Course Communication Edmodo supports the submission of anonymous infor-
mation gathering via the poll posts. These posts are placed directly on the live
feed of the group/user posting them, allowing their respective subscribers to
view and asses the poll. This live-feed nature of Edmodo contributes much to its
responsiveness and user awareness.

Unfortunately, Edmodo does lack live communication, restricting teachers to
user third party application when in need of a web-class lecture. This overlooked
property in the building of Edmodo has led to some universities forfeiting Edmodo

for other suites which support this live communication.

Student Progress/Tracking Student grades are viewed in a simple table which
may be dumped to a comma separated values (CSV) file. Grades may also be
posted from assignments which are not posted on the site. The only down side to
this grade-book is the fact that it is very rudimentary. The generic interface offers
no more than competing CMS. As for progress tracking, there is no such system

for Edmodo. This prevents students from fully utilizing Edmodo.

2.3 Benefit Analysis: Blackboard

Blackboard is currently used by an average of 50 Percent of the U.S. colleges and
universities named in Forbes.com’s Most Connected Campuses List [15]. Black-
board’s usage extends beyond the United States to more than sixty countries, 12

languages, and over 2,200 learning institutions [16]. The black board system is

12

divided into two components. The first component provides the functionality of
managing users, groups, permissions and other administrative functions. Orga-
nizations can choose the second component depending on their use case. If they
have multiple use cases, they may add another component while maintaining
authentication and authorization with the first component. This flexibility allows
organizations to use a familiar package across both academic and non-academic

areas.

Instructor Feedback and Communication Within Blackboard, there is instructor
feedback and automatic grade feedback [17]. These two avenues of feedback allow
students to receive a grade for a quiz or an exam faster that with traditional
methods. Also if the assignment is a submission based assignment, student can
check up on the status of their grade. Alternatively, students can communicate on
each others assignments in a central location for a group assignment. This software
service increases student/teacher communication, preventing conflicts and other
disagreements between instructors and students, increasing overall productivity.
Instructors can also receive feedback via Blackboard’s survey option [17]. This
option allows students to respond anonymously to a set of multiple choice/true-
false questions concerning the course. Students generally ignore this built-in
solution because it does not pertain to the course content. Also, blackboard
does not provide a method for students to “socialize” outside of the assignments.
Schools who do provide a social platform must do so with a separate social
network interface[16]. These two detractors do not usually obstruct nor benefit the

use of the Blackboard.

13

Course Communication Blackboard offers forums, announcements, and virtual
classroom functionality to enhance communication to and from the students
of a course. The announcement feature verifies authorization, and reduces the
tedious process of sending out individual emails to each and every student.
Discussions provide asynchronous communication with subscribers of a forum.
This helps build inter-student relationships while allowing teachers to measure
student competency and class attentiveness. The virtual classroom supports a text
chat room with live interactions between the participants. However, the supported
plug-ins are not generally accessible by all users, thus limiting this method of

interacting with the system.

Student Progress/Tracking Blackboard tracks student progress and usage, allow-
ing faculty as well as students a view of their class status. Instructors can measure
the success or failure of any assignment. This capability, coupled with the time
stamps included, allows for the identification of late or improperly submitted
assignments. The instructor may then input the grades into the online grade book,
showing the students the grade received within a given assignment. However,
there is no method of creating or supporting an analysis tool. This is due to
Blackboard being a closed source CMS, hampering the ability for institutions to

create and integrate software with their Blackboard instance.

2.4 Benefit Analysis: DesirezLearn

Desire2Learn offers flexibility to its users via an extensively customizable interface.
However, as customizable as this CMS is, it is relatively underused, ranking in

the lower fifteen LMS/CMS systems[4]. This aspect, however, does not affect the

14

efficiency and capability of the Desire2Learn CMS. DesirezLearn uses a Learning
Tools Interoperability (LTI) compliant architecture, allowing users to configure
connections (external or internal) to secure sources by parameterizing the link,
allowing for insertion of secure information. When this link is selected, the CMS
launches a security checking mechanism which analyzes the link for a proper
signature. After this signature is validated, the user is then routed to the selected
information. We will explore the pros and cons of Desire2Learn CMS, and therefore

gain perspective of how efficiency the system functions overall.

Instructor Feedback and Communication Desire2Learn provides users with the
general method of communication between Student and instructor via grading
comments, but also provides a social-network framework by which students can
intercommunicate similar to Facebook. This encourages students to communi-
cate outside of the classroom, generally increasing student satisfaction, as well
as student interactions [18]. However, the organization of the social network in-
terface for Desire2Learn may distract from its original purpose. This is because
Desire2Learn’s social communication network is not at the heart of the application,
thus making the interface slightly unusual. Richard Sertia [18] identifies this as a
cause for students to ignore the complication of the site rather than try and learn
it. This ignoring may lead students astray from teachers attempting to use this

medium of communication, thus taking away from the purpose of the CMS.

Course Communication Users are given an option of anonymously submitting
remarks and comments in forums, thus increasing user honesty and the number
of participants in the discussion [19]. Also, Desire2Learn Tracks the number of

posting and the time spent on each post, increasing the methods by which an

15

instructor may grade a forum. Desire2Learn provides instructors with analysis
tools with which an instructor my view the percentage of participation. However,
there is no interface for face-to-face meetings. If Desire2Learn supported a voice
stream with student live text response, at least there would be some form of

student awareness.

Student Progress/Tracking Apart from the user usage statistics previously men-
tioned, Desire2Learn provides a method for the teacher to view all of the grades of
a current student. This student view can then be expanded to allow an instructor to
analyze the student in parallel with the other students within a class. Desire2Learn
also provides student statistical analysis for the viewing of the instructor [20, 21].
This tool allows the instructor to forecast the chance of success of a student, the
success rate of the class, and the areas in which his/her students rate content
up or down. Students are also provided with this view. In the student view, the
analytic tool provides information from a course level (the success rate of certain
assignments within a course) to an academic level (the success rate within a certain
course). There is not, however, a method by which users can view projected grades,

or assignment difficulty.

17

Chapter 3

Project

This project added a plug-in called “Project Grade-Up” (PGU) to the open-source
LMS platform Moodle. This project contains several sub-systems to keep our
system in a Moodle friendly format. Since a large amount of our code consists of
“interfacing” code, we concentrate on the calculations of the burn-up chart and

heat map functionality.

3.1 Architecture

Our project follows the Model View Controller pattern, allowing for a separation of
logic from view functionality. Following this paradigm also allows us to improve
the user experience via the use of Asynchronous Java-script (AJAX). The user
experience, therefore, is not interrupted for the posting or fetching of data to and
from the server.

The MVC pattern depends on a layer of abstraction added within Moodle
called the Data Control Layer. This control layer, as seen in Figure3.1, acts as an

interface to the underlying data in Moodle. Consequently, this Layer allows our

18

CONTROLER

Notify

Get or Change
States

MOODLE

Figure 3.1: The Data Control Layer lies “within” Moodle, allowing for an abstrac-
tion which will assist future developers in adapting our solution.

solution to easily adapt to other LMSs. To adapt our solution to other LMSs it is
only necessary to implement the data control layer. This design also adheres to
Moodle coding practices and principles, and ensures modularity throughout the
added code.

Moodle’s performance may be viewed through the tools XHProf and XHgui,
both of which are components for viewing PHP web-page profile runs and general
performance. In a given page execution, Moodle runs several low level functions
regardless of the function being run. This is due to Moodle’s extreme modularity,

which while integrated with the Zend framework modularity mindset, allows

19

individual components of code to be extremely modular. Even though modules
are being called multiple times in separate calls, this modularity reduces space on
the server code-wise and also improves the overall performance.

This modularity, however, comes at a price. Documentation in Moodle, as
in some open source solutions [22], tends to be lacking. This absence, coupled
with the extreme modularity, leads to a situation where developers have used
slightly different standards than core developers. This lack of standards within
plug-ins and extraneous bodies of code leads to further divergence from prescribed
standards and tends to introduce developer errors [23]. This divergence has
prompted a need for a re-write of the documentation, some code within Moodle
and several large plug-ins This moves the development towards a more standard
development approach. This revision is a part of Moodle 3.0, released November
16, 2015 [24].

The methods used within our solutions follow Moodle’s coding standards [23].
Within Moodle, there is defined separation between different types of plug-ins.
For example, modifications and additions to core student activities are called
modules, visual and minor functional changes to the user interface of Moodle
are called themes, and local unique-to-campus plug-ins are called locals. For the
development of our solution, we felt it best to use the block paradigm of Moodle
plug-ins. Using this paradigm allows for a more generic access model than using
the report or module plug-in, as these plug-ins are not only vetted and scrutinized
at a more granular level, but also Student access to a report would break that
paradigm.

Moodle’s block development [25] follows a core set of instructions. These
instructions call for an adherence to the MVC pattern for the development of

blocks. Blocks use a separate language API integration (e.g. English, French,

20

etc.), core user type authentication, REST service creation, and a centralized client-
resource management system. We follow this pattern throughput the entirety of
this plug-in development because adhering to the standards grants a better rating
on Moodle. This project builds a Model View Control (MVC) block plug-in, with

the individual components as follows:

The Data Control Layer provides an abstraction of the underlying Moodle

data for use in our plug-in.

The Model Interacts with the Data Control Layer to provide a Model for the

MVC pattern.

The Control Layer Manages interactions between the view and Models.

The View Layer provides visualizations using data retrieved from the Control

Layer.

Figure 3.2 shows an approximation of the amount of work required in each of
the above layers. The following sections discuss each of these layers starting with

an overview of the architecture.

3.1.1 Data Control Layer

The Moodle LMS houses the Data Control Layer and manages the data needed
to build and display charts and graphs for the two proposed features. We use
Moodle’s internal data management system and APIs to gather data for the Data
Control Layer. The benefit from using the existing infrastructure in the Moodle
API is that there is no need for regression testing. This means that when Moodle

updates, it will remain backwards compatible []. This also means the Model does

21

Data Control Layer
Approx. 58%

Control Layer
Approx. 18%

} View and

Model Layers
Approx. 24%

Figure 3.2: The greater percentage of our code lies in Moodle specific code within
the Data-Control Layer.

not need to know the location or format of the data, due to Moodle handling
this interaction [proposal ref 12]. This layer provides several functions within the
lib.php library. The purpose of these functions is to extract the data from within
Moodle’s databases and format the data into PGUs tables. Figure 3.3 shows how
our Data Control Layer interacts with Moodle APIs which in turn abstracts the

data from the Moodle Data Layer.

22

e °
[J
°
4 [
Data o
°
Filtration S[EES
PGU< System APlIs
Data Control Layer
Moodle
Moodle L::::< Access API
N N\

Figure 3.3: The Data Control Layer allows an abstraction of Moodle’s data layer,
allowing for a more general interface of our Model Layer with the rest of the
plug-in

3.1.2 Model

Due to the complexity of the data needed for the visualizations, we created a
separate Model from the Data Control Layer in-order to abstract the intermediate
queries between the data control layer and the Control Layer. This Model layer
contains the intermediate database tables and classes to interact with that data.
The .php files contain classes that the controller uses to manage requests to the
tables. The layout of this layer can be found in Figure 3.4.

Figure (Figures.5) shows the schema of the tables that hold the aggregate

23

General View Interface

Burnup @ Heatmap j§ Artifacts

Classes Classes Classes
Requests Update

Framework § Framework Table

Interconnect

General Types ABC

Data Control Layer

Figure 3.4: The Model Layer consists of a combination of a intermediate database
and the associated classes. The classes that exist in this Layer are modeled after
their respective tables.

data retrieved from the data control layer. This aggregate data comes from costly
queries in Moodle. Consequently the data stored in these tables provides quick
access without running those costly queries in Moodle each time a user interacts
with our plug-in

The plug-in also uses Moodle’s services manager, which allows the plug-in to
update the intermediate tables at regular intervals.

The Model also caries all base data structures. These are the artifacts, arti-

fact_date_time, class_date_time classes etc. These individual classes provide the

24

Figure 3.5: The schema of the pgu_tables is such that all objects handled by the
Model can be instantiated without queries to any other table besides itself.

25

General View Interface

Heatmap j Artifacts
Classes Classes Classes

Burnup

Requests Update
Framework § Framework

Table

Interconnect

General Types ABC

Data Control Layer

Figure 3.6: The Control Layer contains a sum of interface code, but the majority of
the code is contained in the update and Abstract Classes (ABC) and its inherited
children.

functionality for the graphs, and provide uniform interface code that allows sepa-

ration of concerns when building the view and controller layers.

3.1.3 Control Layer

This layer handles all data interactions between the Model, and View Layers. First,
it must update all data within our Model. Second, it must relay any and all view
requests to the Model. Finally, it must update the view upon user requests. This

central Control Layer allows the abstraction of nearly all business and session logic

26

Request
Start

Get request

Process

STl Request

Request End

Figure 3.7: A simple diagram demonstrating a request within PGUs Control Layer.

from our View Layer, keeping our code clean and readable. This layer is in two
separate components: the table updating and REST service components. Figure 3.6
shows the controller components in orange.

The table updating component contained within this layer consists of two indi-
vidual components: scheduler and triggered events. The scheduler functionality
in this layer directly configures the scheduling of the underlying LMS through
the data control layer. The REST service components consist of the Burnup and
Heatmap classes, each written to facilitate the transformation the data into JSON
which is consumed by the client side. The client side manipulates the data and

displays it in the visualization. Client side code handles as much of the user events

Elements

UX Handlers
General Graph Teacher Graph
Modification Modification

SVG Generation

Calculation
React Modules .
Matrix

Request Validator

Client-Side

FelpiEE Controls

AJAX Interface

Figure 3.8: The View Layer contains all user experience and interactivity function-
ality. The layers are arranged as to provide maximum modularity concerning the
passing of data as to not overload the client.

as possible without making round trips to the server.

3.1.4 View Layer

The View layer handles all graphics display logic. This includes the PHP views
and JavaScrrpr libraries. We would like to note that our layout depends on the

coding standards of Moodle [26]. This layer is broken into several sections:

e View - This module consists of the encapsulating .php pages and injected

HTML 5 elements

28

Apply

Burnup——, Modifications IAFeEEEs eI Modify Chart

Data Recived Graph Type?

Graph Type

Heatmap————»
g Selector

Process JSONs

?

Figure 3.9: This sample process shows the slight difference between the Heatmap
and Burnup SVG Generation processes. Users can only interact with the Burnup
chart SVG directly, hence its shorter logical path.

o Element Controls - This module controls the interactions with the elements
within our solution

o AJAX - This module controls all request from the client to the server, including

client-side parameter sanitizing

e SVG Generation - This layer handles all client side SVG generation

The view component consists of the .php page itself, the injected HTML

elements, and the theme (Styling). The Element Controls are simply elements

29

which generate a user input method. AJAX handles client side sanatization,
requests data, and parses results. The final segment consists of the Raphael SVG
generation engine and our custom component which handler all graphics creations
and interactions. Figure 3.8 shows the View Layer. There is a slight difference
in how the Heatmap and Burnup SVG Generation methods work. As outlined
in Figure 3.9, the Heatmap does not have any direct user interaction, hence the

difference in code base between the Heatmap and Burnup charts.

3.2 Charts

This project mainly focuses on the graphics, that is the method of displaying the
useful data to a set of users. These graphics are engineered to properly, efficiently,
and correctly display student grade and difficulty data. There are two types of

graphs created for this project:

e A Course Burnup Chart (adapted from agile programming) that shows the

grade state, predictions, and possible outcomes.

e The Load Heatmap visually shows work loads during the current semester for

one or more courses

Our sub systems provide all the data manipulation, filtration, and 'business

logic,” see the above sections for more information on these sub systems.

3.2.1 Burnup-Chart

Within our Burnup-Up chart, a user may view several key pieces of data simulta-

neously. These pieces of information pertain primarily to the grades and current

30

progress of the selected course. Each of these pieces of data answer a specific

question:

e Assignment completion - What have I completed, and what do I have left to

complete?

e Current grade trajectory - What is my current grade? That is, what will my

final grade be if I continue at my current success rate?

e Best possible final grade - Given what I've done so far what is the best

possible grade I could get if I ace the remaining work?

e Final Grade with no additional work completed - What if I stopped now,

what would my grade be?

e Individual assignment weight - How much does each artifact contribute to

the final grade?

e Grade Projection - If I got a particular grade(s) on a specific assignment(s)

how would that change the preceding data?

Figure 3.10 shows our completed graphic as it appears in the plug-in Notice
the differences between assignments which are due (assignment completion) and

those which are incomplete.

Logic Consider the chart as the upper right quadrant in an x-y plane. The x-axis
represents the total percentage of points due. The left most position on the x-axis
represents 0% work due. The right most position on the x-axis represents 100% of
the work due. Although the artifacts required will be in chronological order, the

x-axis does not correspond to time but instead shows the percent accomplished

31

Figure 3.10: This is the completed Burnup chart. The projections (far right)
represent the projected grades of the logged-in user.

and weight of assignments. The y-axis represents the percentage of points earned
in the course. Clearly a student who earn 100% on all their work would see a line
having a slope of 1 from (0%, 0%) through (100%, 100%). The scale of the axes
presented differ between the x-axis and the y-axis so that the slope does not appear
to be one, however the mathematics involved need not account for this disparity.

The black line shows the current grade trajectory. The current grade trajectory
line starts and the origin (0,0) and goes through the last assignment grade plotted
on the chart. The grade point is the percentage earned as of the last assignment
due designated c. Let a; represent the i*" artifact and w; be the weight and p; be

the percentage earned for 4;. The grade point is defined by percentage completed

32

and the percentage earned. The percentage completed is given by

Cc
Percentagewmpleted = Z w; (3.1)
i=1

The percentage earned is given as

C
Percentageogmes = y_, Wi X pj (3.2)
i=1

The grade point is thus defined by

(Percentagecompleted, Percentagecayped) (3-3)

The line from (0,0) through (Percentagecompieted, Percentage, meq) gives the black,
grade-trajectory, line shown in Figure 3.10.

The green line shows the best possible final grade that the student can achieve
given the work completed (or missed) up to this point. It starts from the last grade
given defined by the point (Percentageompieted, Percentageqneq) and has a slope of
1. The y value at x = 100% gives the best possible grade.

The red line shows the final grade with no additional work completed. The line starts
at (Percentagecompleted, Percentageqq,yeq) and continues to the right most border with
a slope of 0. The y value at x = Percentagecompieted gives the final grade with no
additional work completed.

We omitted the class average overall represented by a blue line. Clearly this class
average must be optional for small classes. This line consists of an average of the

current grade trajectory lines from all students from within that specific class. If

33

this is enabled, we define the slope of this line as

Cc
Class ppg = Z Percentagerrned,/ Z Percentagecompieted (3-4)
i=1 i=1

c
where c is the number of students in the class.

Figure 3.10 also shows the weight of each assignment visually represented by
its width. Widths depend on the category weight and the number of artifacts when
assignments are equally weighted. However, no mater what system one uses for
calculating grades a method can be used to assign a weight to each individual
artifact. For example, the assignment category with a weight of Categoryeignt, and
a number of assignments Category ount, the individual assignment weight is given
by

Assignmentyeigny = Categoryueign: / Categorycount (3.5)

Here, Assignment,iqn: gives the percentage of the X-axis that a particular assign-
ment occupies. All artifact together will then add up to 100% and fill the X-axis of

the Burnup chart.

Algorithm Layout The Burnup algorithm primarily uses client side computation
and Raphael.js for the production of charts using Scalable Vector Graphics (SVG).
The code for this graphic is primarily within the client side code. The algorithm
begins by requesting the artifacts for a course. These course artifacts are then
processed into the individual components of the graphic; the artifact polygons,
projection lines, grade regions, and finally the trend line. These components then
are individually formatted into JSON objects before being compiled into a large
string for transmission.

After the calculations for the graphic are completed, the code is then passed

34

Figure 3.11: Within the 'what if” pop-up, the student may enter in a grade to
overwrite the grade in the current artifact, or delete the current artifact. Any and
all changes will persist until the user has refreshed the page.

to the displaying logic, which simply parses the Raphael formatted JSON string
and sends this information to the display div ([reference an image for this process
that encompass both Heatmap and Burnup charts]). For more information on this

process, please refer to [reference to Appendices with Doxygen documentation].

Example Figure 3.11 shows a student using the grade projection feature to play
out a what if scenario for the final exam. Notice how this compares to the first
Burnup Chart. In the second Chart, the student can clearly see that a score of
59% is needed to maintain a ‘B’ in the course. The student may also use the
grade projection feature to lower his grade (or skip it altogether) to see how it

would impact his overall grade projection in the course. Also, the student may

35

use assignment drop option. Delete will allow students to drop an assignment

without receiving a zero for the assigned dropped.

3.2.2 Heatmap-Chart

Our Heatmap-Chart is primarily focused on the displaying a student’s progression
through a course, along with the difficulty per day. This chart contains jagged
triangle-like structures which represent the difficulty over set increments of time.
These increments are determined by either the start and due dates of the artifacts,
or the overall difficulty of an artifact. The finial component of these charts is the

annotations signifying artifact due-dates.

Equations Consider an x-y plot where the x-axis represents time over the interval
[ts, te] and the y-axis represents a work load in the interval [0, ;yqx]. A piecewise
linear function L(t) represents the work load at any time ¢ € [t,, t.]. Students may
view L(t) directly but we will give preference to a simpler single, horizontal bar
chart that varies in color over time. For the preferred chart the function C(L(t))
maps the load intensity to a color spectrum.

Artifact i affects the magnitude of load by an amount /; based on a heuristic
function which takes the type of artifact, the percentage of the grade that artifact
contributes to the overall grade, and the level of the course the artifact comes from.

We define [; as follows.

l; = H(Type(A;), w;, Level (Course(A;))) (3.6)

Artifact i due dates and times appear on the time line and affect L(t) for

an interval of time [t , f..| before it’s due date. The length of the time interval

36

is determined by one of several things. First if the assignment is assigned on
a particular date (e.g. in Moodle if a start date/time is defined), then we will
consider that the artifact starts to affect L(f) at the assigned date/time. Otherwise
we will need to determine time interval length based on a heuristic function based

on the following elements.

e Last due date of an artifact in the same category DueDate(A;_1).

e Weight w; of the artifact as a percentage of overall score

e Preparation time PrepTime(A;) as indicated by a student or teacher.
Whatever heuristic function we develop, it must produce a the time interval [t t,,].

Now we define an artifact load function for artifact i by

m1t+b1 t e [tsi, tei]
Ly (t) =

O t é [tsi/ te,-]

li

-

where m; is the slope defined by and b; is a constant to raise the line at the
starting time to 0.
Finally we can define the mathematical expression associated with each interval

i in the piecewise linear function L(t) as follows.

L(t) = ZLal.t. (3.7)

Algorithm Layout The Heatmap algorithm, unlike the Burnup algorithm, keeps
all business logic on the server. We keep logic for Heatmap computation on the
server in order to save client resources. We do not have any need for keeping

business logic on the client because the graphic is not editable, unlike our Burnup

Figure 3.12: This is a sample Heatmap The purple bar is the users current position
chronologically in the semester, with the blue intermittent bars representing
individual artifacts.

Figure 3.13: This Heatmap spans across two classes within the semester.

Figure 3.14: This Heatmap has vision assistance enabled, changing the color palate
into one who should be able to recognize these colors better than the alternative.

chart. The algorithm selects the artifacts, artifact date time, and class date time
items for the selected course. These data types are used to compute the graphs
different graphical objects. The data is then sent to the client display logic, near

identical to Burnup display logic.

38

Example Consider the example list of assignments shown in Table 3.1. The table
contains added columns to show the category weights and indented individual
weights. Figure 3.12 shows a sample load Heatmap visually representing how the
work load for the same data as Figure 3.10. The vertical blue bars represent the
various artifacts of the course. The student now may view not only their current
position in the semester, but also the up and coming difficulty as the semester
progresses. This allows the student to plan ahead for harder assignments not
only in the class which they currently are viewing, but across their classes as
a whole (see Figure 3.13). The students current progress is represented by the
purple bar. The Heatmap also includes an assisted viewing feature, for those with
visual impairment (see Figure 3.14). However, being that there are many types of
visual impairment, users can view the peaks Heatmap chart regardless of their

impairment.

3.3 Summary

This chapter described the project solution from architecture through the Burnup
and Heatmap charts. It detailed the logic and math necessary to reproduce the

results shown and matched real data to show examples of both types of charts.

39

Category Assignment Weight
Exams 35%
3/12/2014 Midterm Exam 17.5%
4/23/2014 Final Exam 17.5%
Presentations 10%
3/19/2014 Paper Presentation 1 5%
4/2/2014 Paper Presentation 2 5%
Homework /Discussions 30%
1/15/2014 Assignment 1 4.28%
1/22/2014 Assignment 2 4.28%
1/29/2014 Assignment 3 4.28%
2/5/2014 Assignment 4 4.28%
2/12/2014 Assignment 5 4.28%
2/19/2014 Assignment 6 4.28%
2/26/2014 Assignment 7 4.28%
Projects 25%
3/26/2014 Campus Project 6.25%
4/2/2014 Archaeology Project 6.25%
4/9/2014 Voting Districts and 6.25%
States Project
4/16/2014 Who are my Senators 6.25%
and Representatives
Project

Table 3.1: The assignment chart showing the weights associated with the assign-

ment.

41

Chapter 4

Testing and Evaluation Results

This chapter reviews the software requirements, the evaluation process to test
those requirements, and the results of that evaluation.

Our evaluation relies on a simple pass/fail process. When possible, we used
unit tests using PHPUnit [27] for this purpose. We verify visual component
requirements through a visual inspection of the completed application and show a

check sheet that lists the requirements and their completion status.

4.1 Unit Testing

Unit tests focus on testing the functionality of the block plug-in added to the
Moodle application and not on existing Moodle code. Table 4.1 lists all the unit
tests and the functionality that those unit tests covered. Each test tests multiple
pieces of functionality on a single class. Some unit test classes such as the tests

covering the 1ib.php functions, covers a large set of functions in one unit test class.

42

Class Tested

\ Test Information

ClassAbstracts()

This class is the base class for all other classes that we built
for this project. Test_ClassAbstracts() tests the common
properties of the class over a variety of valid and invalid
instantiations.

DefinedDataLayer ()

This class provides functionality for the data Ilayer.
Test_DefinedDataLayer () also tests the common properties
of the class over a variety of valid and invalid instantiations

BurnUp ()

This class provides functionality for formating and serializing
the data from the data layer to the client. Test_BurnUp() tests
getBurnUp () by validating the format of the five different com-
ponents of the chart returned. These include grade artifacts,
grade regions, trend lines, projects and grade level markers.

BurnUp ()

This class provides functionality for formating and serializing
the data from the data layer to the client. The Test_BurnUp()
class tests the function getBurnUp() by validating the format
of the five different components of the chart returned. These
include grade artifacts, grade regions, trend lines, projects and
grade level markers.

HeatMap ()

This class provides functionality for formating and serializing
the data from the data layer to the client. The Test_HeatMap ()
class tests the function getHeatMap () by validating the format
of the five different components of the chart returned. These
include chart polygons, the time line markers, artifacts labels,
and current time marker. Polygons include cutout polygons
defining the various difficulty regions across time.

AJAXQO)

This class provides communication functionality between the
client and the server. The Test_AJAX() class tests instantiation
with both valid and invalid parameters. It also tests requesting
a new page, and changing the representation of graphs for
colorblind individuals.

Table 4.1: List of features successfully unit tested.

43

] Class Tested

\ Test Information

|

lib.php

This collection of functions contains all the data creation func-
tionality described in Section 3. Much of the 5000+ lines of
code contained here pulls data directly from Moodle, using
Moodle APIs. The rest are functions that calculate the infor-
mation needed to create the charts. We test the following
functions

e Block ProjectGradUp_Update PGU_Artifacts_Update()
updates the artifact information that the charts display.

e Block ProjectGradUp_Get _Grade Categories(int
CourseId) returns an object containing all of the artifact
information created in a course. E.g. this would include
all categories, weights, artifacts (like assignments)
in those categories etc. This has the majority of the
calculations described in Section 3.

e Block ProjectGradUp_Get_AggregationCol(int
Catogoryld, int Courseld, int ParentCategoryld,
float WeightOne, float WeightTwo, int
ArtifactId) calculates the weights of individual
artifacts.

provides functionality for formating and serializing the data
from the data layer to the client. The Test_BurnUp () class tests
the function getBurnUp () by validating the format of the five
different components of the chart returned. These include
grade artifacts, grade regions, trend lines, projects and grade
level markers.

Table 4.2: List of features successfully unit tested Continued.

44

4.2 Visual Checklist Evaluation

Visualization features were checked through examining a running test system.

Figure 4.1 shows the features successfully tested. Examples of these figures can be

seen in Section 3 in Figures 3.10-3.14.

<

Burn-Up Chart is available.
Burn-Up Chart shows:

Assignment completion
Current grade trajectory
Best possible final grade

Final Grade with no additional work completed

COCCOX

Grade Projection

Load Heat-Map is available for a class.

Load Heat-Map is available across all participating classes.
Load Heat-Map shows:

v~ Current class load through out the current semester.
v’ Assignment placement within the heat-map to convey relative difficulty.

v~ Schemed color gradient to properly convey areas of congestion within
a semester.

UI contains Burn-Up and Heat-Map charts appropriately.
UI Interacts with Burn-Up chart features where necessary:

v~ Hover over data is displayed properly.
v~ Class add/drop functionality works properly and efficiently.

Figure 4.1: Visualization checklist.

45

4.3 Side-effect Testing

The functionality added to Moodle in the Project Grade-Up block plug-in should
be side-effect free [28] to the original Moodle data. Thus even though we do store
data relevant to the block plug-in, it never modifies any original data. The Raw
Data tests ensure that PGU code does just that [29].

We completed our data tests with relative ease due to PHPUnits method of
asserting a databases state to be the same as prior to the test. These tests show that
our solution has no side-effects on Moodle’s core tables. The following list shows

the unit tests responsible for side-effect testing.

e Test_DataDefineLayer ()

e Test_AbstractClasses()

4.4 Evaluation

Unit tests and visual checklist evaluation shows that our solution meets the
requirements. Performance also plays a large role in the adoption of this plug-in.

Performance evaluation showed that this plug-in block performs at a level
common to other blocks. Our performance evaluation did lead to storing aggregate

data for users in temporary tables for decreased wait times on data requests.

47

Chapter 5

Conclusion

There is currently a demand for a system which can relay progress information
to students within a given course and semester. Current solutions confuse users
with obscure graphs, reducing the impact of such a system. Also, the entire range
of data is not available to students, further preventing the larger impact a grade
analysis tool should have.

In this thesis, we implemented an addition to the Moodle LMS to remedy the
above issues. Based on our research, we postulate that the use of our solution
may significantly increase student awareness of time constraints, as well as help
them prioritize and efficiently schedule study times. The presentation of a burn-up
chart’s indicating progress and the Heatmap’s presentation of time-per-artifact are
several features which contribute to student efficiency. Therefore this solution may
be of great benefit to the students as well as the teachers, increasing communication
and student understanding of progress significantly.

For future work, we suggest a week-at-a-glance feature to the Heatmap, arti-
fact links in the burn-up, and an advanced analysis and research project on the

education benefits of this Moodle plug-in.

49

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

M. Roqueta, “Learning management systems a focus on the learner,” Distance

Learning, vol. 5, pp. 59-66, 2009. 1

J. Monks and R. Schmidt, “The impact of class size and number of students
on outcomes in higher education,” In Real Life (IRL) Collection, vol. 12, pp.

1—23, 2010. 1

W. M. Reynolds and G. E. Miller, Handbook of Pschology: Educational Psychology,

I. B. Weiner, Ed. John Wiley & Sons, Inc., 2003, vol. 7. 1

Desire2Learn, “Desirezlearn insights learning guide,” Desire2Learn.com, Tech.

Rep., 2012. 1, 2.4

L. RAMIST, C. LEWIS, and L. McCAMLEY-JENKINS, “Student group differ-
ences in predicting college grades: Sex, language, and ethnic groups,” College

Entrance Examination Board,, vol. 2, pp. 145, 1994. 1

Capterra. Top learning management system software products. [Online]. Avail-
able: http://www.capterra.com/learning-management-system-software /

infographic 2

M. Media, “Open-source learning management systems: Sakai and moodle,”

Monarch Media, Inc, Tech. Rep., 2013. 2.1

http://www.capterra.com/learning-management-system-software/infographic
http://www.capterra.com/learning-management-system-software/infographic

50

[8] Moodle. (2012) Moodle gradebook. [Online]. Available: http://docs.moodle.

org/24/en/Gradebook 2.1, 2.1

[9] R. Hijon-Neira and A. Velazquez-Iturbride, “Improving the analysis of
studnets” participation & collaboration in moodle forums,” InTech, vol. 6,

pp- 12-60, 2009. 2.1, 2.1

[10] M. HIbl and T. Welzer, “Students feedback and communication habits using
moodle,” ELECTRONICS AND ELECTRICAL ENGINEERING, vol. 6, no. 102,

pp- 63-66, 2010. 2.1
[11] P. Cauley, “A guide to explain it all,” IT Babble.com, Tech. Rep., 2010. 2.2

[12] L. Y. Muilenburg and C. Holland, “Supporting student collaboration: Edmodo

in the classroom,” Master’s thesis, St. Marys College of Maryland, 2010. 2.2

[13] edmodo.com, “Edmodo teacher guide,” Edmondo, Tech. Rep., 2008. [Online].

Available: http://susd.edmodo.com 2.2, 2.2

[14] A.Pop, “Edmodo e-portfolios in efl a case study,” Dimitrie Cantemir University

of Tirgu Mures, 2010. 2.2

[15] P. Bradford, M. Porciello, N. Balkon, and D. Backus, “The blackboard learning
system,” The Journal of Educational Technology Systems, vol. 35, pp. 301-314,

2007. 2.3

[16] A. Tella, “Reliability and factor analysis of a blackboard course management
system success: A scale development and validation in an educational context,”

Journal of Information Technology Education, vol. 10, pp. 25-81, 2011. 2.3, 2.3

[17] Learning Management System (LMS) Review Summary of Findings. University

of Pennsylvania, 2013. 2.3

http://docs.moodle.org/24/en/Gradebook
http://docs.moodle.org/24/en/Gradebook
http://susd.edmodo.com

51

[18] K. A. Livingstone, “Learning and teaching effectiveness in the digital age:
A case study from a pacific tertiary education provider,” Journal of Business

Management & Social Sciences Research, vol. 3, pp. 1-16, 2014. 2.4

[19] Aimetis. (2005) Desirez2learn client suceccess story. [Online]. Available:

http:/ /www.brightspace.com/resources/Desire2Learn_Success_Story 2.4

[20] Desire2Learn. (2013) Does desirezlearn learning environment integrate with.

Short Paper. 2.4

[21]

(2003) Desirezlearn prediction. [Online]. Available: https://

documentation.desirezlearn.com/en/understanding-class-dashboard 2.4

[22] M. Levesque. (2004, April) Fundamental issues with opensource development.
[Online]. Available: http:/ /firstmonday.org/ojs/index.php/fm/article /view /
1137/ 1057\ unhbox\voidb@x\bgroup\@xxxiil\egroups 3.1

[23] M. Community. (2015, April) Moodle coding style. Electronic. Moodle.
[Online]. Available: https://docs.moodle.org/dev/Coding_style 3.1

[24] ——. (2015, November) Moodle 3.0 announcement. [Online]. Available:

https:/ /moodle.org/mod/forum/discuss.php=323243 3.1

[25] —. (2014, September) Moodle block coding guide.
https://docs.moodle.org/dev/Blocks. [Online]. Available: https:
/ /docs.moodle.org/dev/Blocks 3.1

[26] —. (2015, September) Coding. Electronic.
https://docs.moodle.org/dev/Coding. [Online]. Available:
https:/ /docs.moodle.org/dev/Coding 3.1.4

http://www.brightspace.com/resources/Desire2Learn_Success_Story
https://documentation.desire2learn.com/en/understanding-class-dashboard
https://documentation.desire2learn.com/en/understanding-class-dashboard
http://firstmonday.org/ojs/index.php/fm/article/view/1137/1057\unhbox \voidb@x \bgroup \@xxxii l\egroup 3
http://firstmonday.org/ojs/index.php/fm/article/view/1137/1057\unhbox \voidb@x \bgroup \@xxxii l\egroup 3
https://docs.moodle.org/dev/Coding_style
https://moodle.org/mod/forum/discuss.php=323243
https://docs.moodle.org/dev/Blocks
https://docs.moodle.org/dev/Blocks
https://docs.moodle.org/dev/Coding

52
[27] PHPUnit Manual. 4

[28] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage:

Techniques and applications,” StorageSS, 2005. 4.3

[29] C. Noneman and L. McMillan, “Simple data storage and manipulation for

scientists,” 2011. 4.3

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Benefit Analysis: Moodle
	Benefit Analysis: Edmodo
	Benefit Analysis: Blackboard
	Benefit Analysis: Desire2Learn

	Project
	Architecture
	Data Control Layer
	Model
	Control Layer
	View Layer

	Charts
	Burnup-Chart
	Heatmap-Chart

	Summary

	Testing and Evaluation Results
	Unit Testing
	Visual Checklist Evaluation
	Side-effect Testing
	Evaluation

	Conclusion
	Bibliography

