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Mesh slicing is the process of taking a three dimensional model and reducing

it to 2.5 dimensional layers that together create a layered representation of the

model. The process is used in layered additive manufacturing, three dimensional

voxelization, and other similar problems in computational geometry. The slicing

process is computationally expensive, and the time required to slice an object can

inhibit the viability of layered manufacturing in some industries. We designed and

developed a fast implementation of the slicing process that uses new asymptotically

optimal algorithms and takes advantage of parallel processing platforms. To our

knowledge, no other slicing implementation leverages massive parallel execution

hardware, such as graphics processing units (GPUs), leaving significant potential

for improvement. Furthermore, no published set of slicing algorithms completes

all three major steps in the slicing process (preprocessing, slicing, and contour

assembly) in linear time complexity, which our design achieves. Therefore, our

implementation improves the current state of the art in mesh slicing.
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Chapter 1

Introduction

Reducing three-dimensional models to 2.5 dimensional layers is a required step

for several problems in computational geometry. One of the applications of

this process, called slicing, is the creation of layered machining paths used in

layered additive manufacturing, or 3D printing. Motion View Software LLC, a

manufacturer of 3D printers and our partner in this project, has experienced a

wide range in slicer application performance, from the Slic3r [1] project on the

low end to Simplify3D [2] on the high end; their comparisons show Simplify3D

is over an order of magnitude faster than Slic3r. This variance shows that the

3D printing industry has no standard for slicing algorithms, suggesting room

for refinement and improvement. Furthermore, while hardware-assisted mass

parallelism techniques have been applied to similar problems[3, 4], we are aware of

no research that applies such parallel computing techniques to the slicing problem

on modern hardware[5].

This project’s goal, then, was to develop slicing algorithms with a low asymp-

totic time complexity and implement them while exploiting unused computation

resources, such as graphics processing units (GPUs), to optimize slicing perfor-
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mance. However, computing tasks on devices other than the CPU are device-

specific by nature. It was our goal to create a slicer that performed well on a

variety of available hardware. This goal adds the requirement that our application

architecture must be modular and extensible so support for new devices can be

added in the future. Our splicing implementation is intended for actual use in

industry, and must, therefore, support at least the basic features of a real-world

industrial slicer. We discuss these requirements in detail in Chapter 3. The indus-

trial application of the slicer required that our slicer’s output needed to accurately

represent the three dimensional model given to the slicer as input. Finally, while

our goals focused on optimizing for speed and GPU-assisted computing, our

slicer had to use other system resources in reasonable quantities to be viable in a

real-world environment.

Layered additive manufacturing is exciting technology that creates opportuni-

ties that were not possible or feasible in the past. Recent advances in the technology

enable rapid production of prototypes or manufacture of objects that are unique

to a specific case, such as medical equipment for an individual person. However,

some applications of case-specific manufacturing require a faster manufacturing

process than is currently available. Creating a faster implementation of the slicing

process pushes additive manufacturing toward being able to meet those needs.

Our slicing implementation was developed for Motion View Software LLC, a

company applying additive manufacturing to case-specific industrial solutions,

but the competition provided by a parallel-computing focused implementation of

slicing algorithms will necessarily spur competition and growth in the industry.

In Chapter 2, we discuss more background information on the slicing problem

and other solutions. In Chapter 3, we present our approach and a detailed report

of our implementation. In Chapter 4, we explain our evaluation methods and goals,
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and in Chapter 5, give the results of our evaluation. In Chapter 6, we summarize

and conclude our report.
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Chapter 2

Background

Our project primarily interacts with two research areas. The first is the triangle

mesh slicing problem, which has been approached many ways since the inception

of additive manufacturing. The second area is heterogeneous program execution,

or executing one program across multiple, varying processing platforms. Because

heterogenous execution techniques and design are unique to each processing

platform used in tandem with the CPU, such as GPUs or signal processors, we

focus our research on heterogenous execution using our proposed hardware

accelerations platform, GPUs.

2.1 Slicing Triangle Meshes

Slicing triangle meshes into layers that manufacturing machines can build is

fundamentally an optimization problem. The process typically consumes immense

system resources, especially processing power and memory. Most techniques focus

on optimizing for either computational or memory efficiency at the expense of the

other.
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The slicing problem has two key variants used by different manufacturing

processes. The first involves the creation of slices of varying width to best repro-

duce the contour of the object perpendicular to the slicing plane. Pandey [6] et al.

provide a comprehensive overview of this variant, discussing issues and covering

a breadth of techniques for determining the thickness of each slice. Research

regarding this variant tends to focus on methods for calculating layer thickness

rather than optimizing the slicing process itself. Tata et al [7], however, present a

slicing engine that uses facet grouping and feature recognition to improve the accu-

racy and efficiency of variable thickness slicing. Variable thickness manufacturing

techniques have lost some popularity since cheap 3D printers have made additive

manufacturing much more available while typically only allowing uniform layer

thickness. The manufacturing process our slicer targets assumes that layers will

generally be of uniform thickness.

The second variant assumes layers will be the same thickness in most cases;

while layer thickness may be varied for additional durability on the top and bottom

of the manufactured object, thickness is not used to more accurately manufacture

the perpendicular contour. Thus, research on this variant of the problem focuses

on generating the object’s contour for each slice as efficiently as possible. Choi

and Kwok [8, 9] propose two related techniques for uniform thickness slicing,

optimizing for reduced memory usage by pulling into memory only the triangles

from the mesh that are necessary to compute the current slice. These techniques

are ideal for low memory systems or massive meshes but adds significant CPU

overhead. Vatani et al. [10] also propose a solution where additional computation

resources are used to minimize the number of triangles pulled into memory. They

also use nearest-point analysis to generate the slice contours; this technique has

interesting mesh correction applications but also introduces heuristic inaccuracy
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into contour generation. Our slicer’s use case allows for systems with large

memories capable of storing multiple large meshes simultaneously but has tight

time constraints. Thus, algorithms that optimize for memory are not appropriate

for our project.

Gregori et al. [11] present an algorithm that organizes triangles into a tree struc-

ture based on the minimum and maximum coordinates on the axis perpendicular

to the slicing plane. It then uses this tree to iterate through the triangles, calculating

intersections with the slices that fall in a given triangle’s interval, avoiding slices

outside a triangle’s interval. Huang et al. [12] propose a similar technique that uses

hashing instead of a tree structure, saving on prepossessing time in exchange for

not avoiding all unnecessary slices outside a triangle’s interval when calculating

intersections. McMains and Squin [13] introduce a sweep plane slicing algorithm

that begins slicing at one edge of the mesh and continues progressively across

it, updating status information as the mesh is discovered and slicing along the

way. This sweep plane technique is incredibly efficient for regular shapes with

few vertices but may not perform well when slicing irregular or dense meshes.

In addition, the vertex processing necessary for maintaining status information

is involved and difficult to implement. These three techniques are all promising

approaches to reducing processing time when slicing meshes. However, they are

are all sequential algorithms with no obvious parallel computing applications. Our

slicer should perform well across varying systems and hardware availability, and

we will evaluate these algorithms for inclusion in our slicer when handling slicing

performed strictly by the CPU, but other techniques will be needed for parallel

processing devices such as the GPU.

Research applying parallel algorithms or GPU-assisted processing to triangle

mesh slicing is scarce. Kirschman and Jara-Almonte [5] discuss slicing using
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parallel computing, but no specific algorithm is given and the systems used are

so antiquated that the assumptions for hardware capability in a modern context

likely obsolete their techniques. Liao [3] and Hsieh et al. [4] apply GPU-assisted

computing to a similar problem, mesh voxelization. Mesh voxelization involves

slice layers and generating contours and filling them, much like the mesh slicing

problem. However, the actual algorithms are very different because voxelization

produces a raster image for each layer and slicing produces a vector image for each

layer. GPUs are designed for generating and displaying raster images, and thus,

voxelization algorithms tend to use typical GPU graphics libraries rather than the

GPU-assisted computing methods discussed in the next section that are applicable

to our problem.

2.2 GPU-Assisted Program Execution

Using multiple, diverse processing units together to execute a complex task or set

of related tasks is known as heterogeneous computing. GPU-assisted program-

ming, where a GPU is used to assist a CPU by more quickly executing massively

parallel sections of code, is a specific form of heterogeneous computing. Hetero-

geneous computing is both a developing field and very application-specific in

implementation. Because of this, research on heterogeneous computing concen-

trates on scheduling tasks across heterogeneous systems, a problem intrinsically

faced by all such systems. In GPU-assisted computing, the GPU schedules assigned

tasks in an established way known to the programmer ahead of time, and the

CPU assigns all tasks the GPU performs, avoiding this scheduling problem. Thus,

research on generic heterogeneous computing will not apply to our project as long

as GPU-assisted computing remains our hardware acceleration technique.



9

Two GPU computing frameworks dominate the market. Compute Unified

Device Architecture (CUDA) is a proprietary framework specifically for use with

Nvidia brand GPUs. OpenCL is an open-source framework maintained by Khronos

Group that is supported by most processor manufacturers, including AMD, Intel,

and Nvidia, three primary manufacturers of GPU chipsets. Comparison of mature

versions of the two frameworks has yielded the consensus that their performance

is nearly identical[14]. Because our project seeks to create a slicer that performs

well on a variety of hardware, one or both frameworks may be used to allow peak

performance on a variety of GPUs.

OpenCL and CUDA use a nearly identical programming model[15, 16]. For

convenience, OpenCL terminology will be used here. The CPU, known as the

host in a GPU programming model, is the central controller for all processing.

It handles primarily sequential sections of code and sends work to the GPU for

parallel sections of code. It also handles transfer of data between the main memory

of the CPU, or host memory, and the main memory of the GPU, or global memory.

Code to be executed on the GPU is called a kernel, which is analogous to a function

in most programming languages. A kernel is a basic series of instructions that

operates on a small subset of the problem’s data and can be executed in parallel.

The GPU itself is called a compute device; devices other than GPUs can also

be compute devices. A compute device is made up of multiple compute units,

each of which performs assigned tasks independently of all other compute units.

Each compute unit is made up of compute elements, small processing units that

actually execute GPU machine language instructions. A work item is one instance

of a kernel that is executed on a single compute element. Each compute element

has private registers for executing its work item called private memory. Batches

of work items that are assigned to a compute unit are called work groups, which
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share that compute unit’s local memory, a cache manually controlled by the

programmer[16]. Depending on implementation, some synchronization features

are available between work items within a work group, but never between work

groups. All compute units share the GPU’s global memory, and because global

memory is the only GPU memory the CPU can access, all kernel results must be

stored there. [15] For a more detailed introduction to GPU-assisted programming,

Owens et al. [17] provide an in-depth article.
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Chapter 3

Project Approach and Solution

Our first design consideration for this project was computational performance,

performing the slicing steps as rapidly as possible. We first researched current

algorithms but found little research applying parallelization to the slicing problem.

Furthermore, all the slicing processes we found in the literature used at least one

O(n log n) time complexity algorithm. Lacking a satisfactory foundation to build

off of, we started from scratch, designing our own algorithms as we proceeded

through the slicing steps, hoping to improve on previous work. In this chapter we

discuss the requirements of our slicing engine, the methods and algorithms used

to meet those requirements, and the deliverables generated by the project.

3.1 Project Requirements and Methods

Our slicing implementation needed to provide the functionality required by Motion

View Software to use it as part of their additive manufacturing platform. It supports

basic industry-standard features and settings, performs competitively at industrial

workloads, and is readily extensible so functionality can be added easily by other
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developers after the project is complete.

The software is implemented as a Windows console application so that it can

be easily integrated into existing software; no graphical user interface was desired.

A console application is preferred because the slicer is meant to be a component of

a complete additive manufacturing control application, and console applications

can easily be used as both a component and as a standalone solution. We used

C++ for the host (CPU) code to take advantage of performance gains possible

when using a lower level language. Device-specific code was written in whatever

language the platform supported. Our current GPU code implementation uses

OpenCL’s variant of C that contains extra language features for parallelization. We

use AMD’s implementation of and software development kit for OpenCL.

Our input was specified as two files, a three dimensional triangular mesh

and a configuration file. Our software reads the configuration file and uses is

to set up the parameters for the slicing process. The configuration file supports

industry-standard options, such as layer thickness and size of the print head, as

well as implementation specific options such as specifying the parallel processing

device to use. Our implementation accepts industry-standard STereoLithography

(STL) files as the input mesh type, including support for single STL files with

multiple models in it.

Our software’s output is an in-memory data structure of line data representing

the contour(s) of the input mesh on each layer. Lines are ordered based on their

position in the contour, so the next line in the data structure is adjacent to the

previous line in the data structure. This output data structure will be added to

and eventually converted to machine readable instructions during extension of the

software.

The following non-functional requirements guided our design and implemen-
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tation of the slicer. The primary non-functional requirement was a low total time

required for the slicing process. We prioritized computational speed over other

performance types, especially memory usage. The slicer uses as much memory

as is available to it on the system up to the amount that it needs; it does not limit

itself to a set amount less than the total memory of the system.

Wherever practical, we parallelized the slicing process to increase performance.

The preprocessing cannot be easily parallelized and requires few enough computa-

tions that the benefit would be minimal and not worth the development time. The

primary slicing calculations are computed using a GPU, parallelizing the problem

over hundreds of individual processors. Contour assembly is parallelized on the

CPU at the layer level. The user configuration file specifies how many CPU threads

the program creates. Those threads then use a queue to efficiently divide the work,

each thread accepting a new layer from the queue when it has finished assembling

contours on its current layer. The algorithms used in these processes is discussed

in more detail in Section 3.2. In our proposal, we said that if we found problems

that were well suited for parallelization but that sequential code overtook in real

performance, we would provide parallel code as well for use with more powerful

future parallel execution hardware. We found no such problems; all parts of our

code either execute in trivial time sequentially or are improved by some form of

parallelization.

Our slicer’s output needed to be accurate enough for industrial use. To that end,

we decided to avoid approximating our input data; many slicers reduce accuracy

and improve performance by approximating the shape of each layer using less

lines than specified by in the input mesh. While performance was our primary

design concern, we decided that approximating in this way rendered our output

partially incorrect and, therefore, did not meet the requirements of the project.
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Specific accuracy metrics are discussed in Chapter 4.

The slicer’s code needed to be modular and extensible to promote ease of

maintenance and facilitate adding new features in the future. The GPU profiles

feature allows the slicer to modify its parameters according to the capability of

the GPU used. New profiles can be added easily, allowing the slicer to support

new GPUs. The slicing process is inherently a data transformation process, and a

pipeline design best fits the series of transformations the slicing process entails. A

pipeline requires less emphasis on modularity than we originally thought. A single

governing class is enough to organize the primary pipeline processes of the slicer.

Each conceptual stage of execution is split into its own discrete function, however,

and each is well-documented with comments to assist maintenance. Because of the

straightfoward nature of the pipeline, new functionality can be appended easily.

The high-level architecture for the slicer is illustrated in Fig. 3.1, showing the order

and components of the pipeline. The CPU slicing function shown in the figure is

out of the scope of this project, but it is accounted for in the design to allow for

easy extension in future work.

Input

Processing

Mesh

Preprocessing

Properties

Singleton

GPU Slicer 1

CPU Slicer

GPU Slicer 2

Slicing Functions

Contour

Assembly

Output

Generation

Figure 3.1: Proposed high-level architecture for the slicer application.
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Figure 3.2 provides a breakdown of major tasks for the implementation of our

slicing application. The percentages shown are estimates of the total project time

spent on each activity.

18%

5%

18%59%

Project Preliminaries and Open CL SDK configuration

Preprocessing Sort

GPU Slicing

Contour Assembly

Figure 3.2: Breakdown of development activities by time spent.

3.2 Algorithms

Our slicing implementation relies on three primary algorithms. The first is the

preprocessing sort algorithm that creates a list of triangles each slice needs to find

an intersection with. The second is the actual slice function itself, which calculates

the intersection lines that comprise the contours. The third algorithm is the contour
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assembly algorithm, which takes the unsorted lines from the slice function and

sorts them into ordered, complete contours.

Before defining the algorithms and providing a running time analysis, we

present a definition of the values we use in the algorithms and a lemma needed

for the analysis of the algorithms.

Definition 1. Let n be the number of triangles in the mesh and m be the number of slices a

particular run of the slicing algorithm contains. For each triangle ni, we define the number

of slices that it intersects as slices(ni). We define

m =
1
n

n

∑
i=1

slices(ni)

Lemma 3.2.1. Let n, m, and m be defined as in Definition 1, then there is no relationship

between n and m. Consequently, both m and m can be treated as constants in the analysis

of the slicing algorithm.

Proof. Increasing n does not cause more slices to intersect a given triangle. In

general it has opposite effect since more triangles for a given object means smaller

triangles in general and a smaller m. In the worst case, every slice plane will

intersect every triangle in a mesh, causing m to equal m. However, m depends

on the height of the mesh and is not related to n at all. Hence even in the worst

case m is a constant not related to n. For all but trivial meshes, n is much larger

than m. Therefore, m and m can be treated as constants in analysis of the slicing

problem.

Algorithm 1 is our preprocessing sort algorithm. It first creates a list of buckets,

or storage container lists. Each bucket is a list of the triangles that will produce a

line when intersected with that bucket’s slice plane. A slice plane is a coordinate
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on the Z, or vertical, axis that defines a plane that is infinite on the X and Y axes.

Each slice plane corresponds to one of the discrete layers, or slices, that comprise

our output data. Next, each triangle is added to one or more buckets unless the

triangle is parallel to the slice planes, which results in the triangle being dropped

from the triangle list. In order to quickly compute which buckets a triangle belongs

in, we calculate two indices, the index of the first bucket that the triangle should be

in and the index of the last bucket the triangle should be in. The triangle must also

be placed in all buckets between those two indices, so these two indices give us a

complete implicit list of all buckets a given triangle should be in. The indices are

calculated by converting the minimum and maximum z coordinates of the triangle

into integer values by substracting the starting coordinate of the entire mesh from

the current coordinate and dividing by the thickness of the slices. The algorithm

then iterates over the range created by the two indices, adding the current triangle

to each bucket in the range.

The bucket creation process on line 2 of Algorithm 1 requires an action for each

slice and is performed only once, resulting in a time complexity of O(m). The for

loop on line 3 requires everything within the loop to execute once for each triangle.

Lines 4 through 13 execute in constant time. The loop at line 14 repeats m times.

Because the loop on line 14 is repeated for each iteration of the loop on line 3, lines

3 through 14 result in a time complexity of O(nm). Thus, the total time complexity

for the algorithm is O(nm + m), which simplifies to O(nm). By Lemma 3.2.1, we

can simplify the effective time complexity for the preprocessing algorithm to O(n).

Algorithm 2 is our actual slicing algorithm, the algorithm that calculates the

lines created by an intersection of a slice plane and a triangle. The algorithm

calculates such an intersection for every triangle in each bucket created during the

preprocessing sort. While this is represented by nested for loops in our algorithm,
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Algorithm 1: Preprocessing sort.
input : Triangles T
output : Buckets B

1 begin
2 B←− Create list o f buckets()
3 foreach triangle t in T do
4 Calculate min and max z-axis coordinate for current triangle
5 if current triangle is parallel to z-axis then
6 Drop triangle and continue to next triangle
7 else
8 Let Indexlowest be the index of the lowest bucket intersecting t
9 Indexlowest =

trianglemin Z−meshmin Z
slice thickness

10 Similarly we have
11 Indexhighest =

trianglemax Z−meshmin Z
slice thickness

12 if indexhighest == |slices| then
13 indexhighest = indexhighest − 1

14 for i = Indexlowest to Indexheighest do
15 B[i].Add(t)

lines 4-9 of our algorithm are actually executed as parallel execution threads on the

hundreds of processors in the GPU. To calculate the line, three-dimensional line

intersections of the slice plane with each of the three line segments that comprise

the current triangle are calculated. The points created by these intersections are

then checked against the bounds of the triangle. The two intersection points that

are within bounds are the two ends of the intersection line. This line is then added

to a list of output lines. The normal vector for this line is also calculated and

added to the result data. There are special cases, such as when a slice plane passes

through a corner vertex of a triangle, creating three intersecting points that are

within bounds. Our implementation handles these cases, but the specifics are

omitted for simplicity.

The first for loop of Algorithm 2 executes once for every bucket in the list of
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Algorithm 2: Slice algorithm.
input : Buckets B
output : Line Segments S

1 begin
2 foreach Bucket b in B do
3 foreach Triangle t in b do
4 Let ContourSegment be a new line segment
5 foreach LineSegment l in t do
6 Point p = B.SlicePlane ∩ l
7 if p ⊂ l then
8 CountourSegment.AddEndPoint(p)

9 CountourSegment.CalculateNormal();

buckets. The nested for loop executes once for each triangle in the current bucket.

Together, these loops cause lines 4 through 9 to be executed once for every triangle

in every bucket. From Algorithm 1, we know that the total number of triangles

in buckets is nm. Lines 4 through 9 of Algorithm 2 all execute in constant time.

Therefore, the time complexity of this algorithm is O(nm). By Lemma 3.2.1, we

can simplify this to a time complexity of O(n).

Our final algorithm, the contour assembly algorithm, is presented in Algorithm

3. This algorithm takes a list of unsorted line segments for each layer and creates

complete, ordered contours as output. The algorithm first creates a hash table

that we conceptualize as a virtual screen. Each location on the virtual screen is

a pixel, a list of references stored at that point. These pixels are more formally

called PointLists in the algorithm. Each line segment from the input is plotted on

this virtual screen by placing the endpoints of the segment in the corresponding

pixel lists, accessed by using f(endpoint’s x, endpoint’s y) as the key. Once the

lines are all plotted, a new path, or list of line segments that comprise a contour,

is created. When a complete contour is found, all lines in its path are removed
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from the virtual screen and added, as an ordered contour, to the output. This

process repeats until the virtual screen no longer has any line references in any of

its pixels.

Each path is begun by picking a random pixel from the virtual screen and

selecting a random line reference within the pixel that becomes our starting point.

From the line reference, the location of the other endpoint of this current line is

found. This other endpoint is used as a key to find the next pixel in the contour.

In this pixel’s line reference list are one or more lines that are not the current line

used to find the pixel. If only one other line reference is present, that line is the

next line for the contour. If multiple lines are present, a process of selecting the

next line is used that is omitted here for simplicity. Each line found to be part of

the contour is added to the current path. This process of using the current line’s

other point to find the next line is repeated until the next line selected is the first

line of the path. When the next line is the first line of the path, the algorithm has

found a complete contour. The path is then run through a postprocessing process

where gaps are closed and exactly parallel adjacent lines segments are combined

into longer segments. Each line in this path is then added to the final layers data

structure as a new contour. As explained earlier, the line references in the virtual

screen for each line in the completed path are deleted and a new path is begun by

picking another random starting location. This process repeats until there are no

more line references in the virtual screen.

The contour assembly algorithm has a significant number of involved edge

cases, including gaps between lines, partial contours, overlapping lines, and

complex shapes that have many lines on a layer meet at a single point. Our

implementation handles all these cases, but for simplicity the often extensive

solutions to these edge cases are omitted here.
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Algorithm 3: Contour assembly algorithm.
input : Line Segments S
output : Ordered and complete contours C

1 begin
2 Let V be a HashTable with hash function f (x, y)
3 foreach LineSegment l in S do
4 foreach Point p in l do
5 if f (p) /∈ V then
6 V.newPointList(p)
7 V.addLine(l)
8 else
9 V.addLine(l)

10 Let Path be a list of LineSegment pointers.
11 while !V.isEmpty() do
12 Start = V.getPointList()
13 CurrentLine = Start.GetLine()
14 Path.Add(CurrentLine)
15 CurrentPoint = CurrentLine.OtherPoint(Start)
16 do
17 if only one line reference at current point then
18 CurrentLine = only reference
19 else
20 CurrentLine = LineChooser(CurrentPoint)

21 Path.Add(CurrentLine)
22 CurrentPoint = CurrentLine.OtherPoint(CurrentPoint)
23 while Current!=Start
24 PreviousLine = Path.LastLine()
25 foreach line l in Path do
26 CurrentLine = ContourPostprocessing(CurrentLine, PreviousLine)
27 Layer.Add(CurrentLine)
28 V.Remove(CurrentLine)
29 PreviousLine = CurrentLine

It is easiest to analyze the time complexity of the contour assembly algorithm

in terms of its input. The number of input lines is equal to the number of triangles

in buckets from the preprocessing stage, nm. Each of these lines is acted upon

three times in the algorithm: once when the line is plotted, once when the line is
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added to the current path, and once when the line is postprocessed and added

to the final data structure. Thus, the algorithm’s time complexity is O(nm). By

Lemma 3.2.1, we can simplify the time complexity to O(n).

All algorithms in our implementation have a time complexity of O(n) where n

is the number of triangles in the input mesh. It is necessary at each stage of the

slicing process to involve each triangle at least once; otherwise, triangles and their

corresponding computed contour lines would be missing from the output data.

Because the output data cannot be correctly calculated without involving every

triangle in each stage, the lower possible time complexity for any of our slicing

algorithms is O(n). Therefore, our implementation is asymptotically optimal.

3.3 Final Deliverables

The following materials are available to the School of Computing and Motion View

Software LLC:

• Slicer application source code

• Access to project source control at https://bitbucket.org/cdant/masters-project

• This report from the McKee Library

Project source code is proprietary property of Motion View Software LLC.

https://bitbucket.org/cdant/masters-project
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Chapter 4

Testing/Evaluation Plan

A primary goal of our project is to provide fast slicing performance on a wide range

of hardware, so modularity and extensibility are key non-functional requirements

for our code. Modular design facilitates a system that uses many differing versions

of the same functionality. Extensibility allows new hardware to be supported in the

future. Originally, we planned on a test-driven design approach with extensive unit

testing. During implementation of the project, we realized that we did not know

enough about the slicing problem’s edge cases for test-driven development to be

practical. Instead of unit tests, we have used just-in-time testing when evaluating

whether our code is producing the desired result. This approach has yielded

similar results: each section of code tested with real-world input. Because the 3D

models used in testing are real objects similar to what will be sliced, common

intersections between code modules are tested implicitly and every code module

is involved in the tests. Some of these tests essentially serve as system tests, testing

the interactions of a series of modules that together make up a use instance of the

entire system.

Because of the precision required for industrial applications of additive manu-
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facturing, our slicer must create output that precisely represents the initial input

object. The planned output format will be a G-code file, so a G-code simulator will

be used to visualize and compare the dimensions of the generated G-code to the

dimensions of the input mesh. Output dimensions must differ from the original

object by less than 2% on each dimension.

The slicer has a varied list of functional requirements, most of which are not

co-dependent. Not only must these functions be supported by the slicer, but

all functions must be compatible with any other function that is not mutually

exclusive to it. Originally, we planned a procedure pipeline, a system that had

rules of interaction, ordering, and input/output types explicitly enforced. During

development, we realized that once the contour assembly stage was complete, the

rest of the process could easily use a single data structure that was added to and

modified at each step, rendering input/output checks redundant. We decided that

ordering could easily be handled without developing the full-featured procedure

pipeline, so we streamlined the process. Using visual simulators created during

development, we have verified the functional requirements of the process are being

met.

The slicing process is intensive in both data and computation and is highly

dependent on input. Stress testing was used to ensure that the slicer can handle

the load for real-world input sizes. The slicer fails gracefully when given loads or

input that it cannot handle. Failure conditions, such as overly large workloads and

malformed input meshes, have been tested to ensure that the software can detect

failure, abort execution, and notify the user that a problem has occurred.

Low execution time is a primary goal of our project. For the project to be

considered successful, it must perform as well or better than currently available

open-source alternatives. For this purpose, we compared our slicer’s total slicing
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time to that of the Slic3r [1] open-source project. In order for the performance test

to be considered successful, our slicer must be at least four times faster than Slic3r.

Input models used for this test must be large, as speed differences for trivial models

are themselves trivial. In our proposal, we specified that the mesh tested should

have at least 5,000 vertices and should be tall enough to require at least 400 slices.

The test meshes given to use by Motion View are often only tall enough to require

200 slices. However, they are comprised of over 100,000 faces, meaning the total

data size is actually many times larger than we originally specified. Furthermore,

the algorithms used in slicing are often better at quickly computing more layers

than more data per layer, so trading a lower number of layers for more vertices

actually increases the rigor of performance testing. Memory efficiency is not a

primary goal of the project, but memory consumption needs to be reasonable

enough that it does not significantly impact slicing speed and allows for slicing

models of practical size. Thus, the large model specified above must be sliced

using no more than 10 GB of memory.

As explained in Chapter 3, the scope of the project was adjusted during

development. While the eventual goal of development is still a working slicing tool

for Motion View Software, development of the slicing application is still ongoing,

and thus, acceptance testing will not be possible.

During development, we created visual simulators to assist in finding and

solving problems. These visual simulators also aid us in evaluating our implemen-

tation. They allow us to visually confirm that the functional requirements of the

project are being met by showing us the output we expect when all features are

working correctly. The simulators also allow us to click on a location on the image

and receive the coordinates, in the units of the input mesh, of that location. We

can use this capability to confirm that our mesh differs in dimensions from the
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input file by less than the target maximum of 2%.

Figures 4.1 and 4.2 together provide an example of using the simulator to

confirm whether a functional requirement is being met. Figure 4.1 shows a visual

simulator used during perimeter generation, a process unique to layered manufac-

turing and part of an extension to our implementation that is still in development.

The white lines in this image represent part of the contour created using the three

major slicing steps discussed in this paper. A functional requirement for this ex-

tension specifies that all perimeter lines must be parallel to a line on the outermost

contour. Because the white line between the two red lines is perfectly vertical, its

corresponding perimeter line should also be vertical. Figure 4.2 shows that the

next perimeter line is far from vertical, meaning this functional requirement is not

yet being met.

A summary of tests and corresponding target outcomes is provided in Table

4.1.
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Figure 4.1: Screenshot of a visual simulator showing the outermost contour during
perimeter generation.
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Figure 4.2: Screenshot of a visual simulator showing a perimeter line calculated
during perimeter generation.
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Table 4.1: Tests and target outcomes.

Test Outcome

Just-in-time testing
Each code module produces
correct output for real-world

input

Integration
Common interactions tested and
each module represented at least

once

Accuracy Output dimensions vary from
original object less than 2%

Functional Functional requirements met

Failure conditions Failure detected, execution
aborted, and user notified

Execution time
Faster than Slic3r project for mesh
with >100,000 vertices that results

in >200 slices

Memory consumption

Memory usage does not peak
above 10 GB for mesh with

>100,000 vertices that results in
>200 slices
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Chapter 5

Results

Using the methods explained in Chapter 3, we built our implementation of a

mesh slicer, referred to from here on as Sunder. The results of our just-in-time

and integration testing, as discussed in Chapter 4, is correct, sliced output of a

real-world input mesh. Each module must be implemented correctly in at least the

general case in order for the module to create correct output. Due to the nature

of a pipeline process like slicing, if the modules are not properly integrated, the

result will also be incorrect.

The following figures are screenshots of our visual simulators showing the

output of Sunder for our two primary test meshes used during development.

Figure 5.1 shows the 3D mesh of our first test file, demo.stl. This mesh is a 3D

model of a person’s teeth and gums. Figure 5.2 shows the first sliced layer of this

mesh, the bottom-most slice. The contour displayed in the simulator follows the

shape of the base of the input mesh from Fig. 5.1. Figure 5.3 is a close-up view of

part of this first slice’s contour, revealing the individual lines that comprise the

contour. Slightly darker areas seen between lines are not gaps; they are artifacts of

the simple Windows drawing API used for the simulators. Figure 5.4 displays a
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later slice from the demo mesh output on which the outlines of individual teeth

can be seen. Figure 5.5 shows the 3D mesh for our second test file, 20arch.stl. This

file is comprised of the demo mesh rotated to be standing upright and copied

twenty times. Figure 5.6 shows a slice near the base that contains 40 contours, two

for each of 20 arches. Figure 5.7 shows a much higher slice where the two sides

of each arch have combined into one contour that shows the beginning of canine

teeth. From extensive visual testing using the simulators, we conclude that we are

producing correct slicing output that matches the input meshes.

Figure 5.1: Screenshot of the demo.stl mesh displayed in the open-source modeling
software Blender.
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Figure 5.2: Screenshot of the first slice of the slicing output from the demo mesh.
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Figure 5.3: Zoomed screenshot of part of the first slice from the demo mesh.
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Figure 5.4: Screenshot of a higher slice from the demo.stl mesh.
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Figure 5.5: Screenshot of the demo.stl mesh displayed in Blender.
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Figure 5.6: Screenshot of a slice near the base of the 20arch mesh.
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Figure 5.7: Screenshot of a slice near the top of the 20arch mesh.

These screenshots all show output lines calculated during the second stage of

our implementation, the actual slicing step. The preprocessing step has no data

that can be easily visualized. However, it is the preprocessing step that creates the

canonical list of triangles that should be checked against each slice plane. Each

entry in this list results in one of the output lines, so if the preprocessing step was

incorrect, either extraneous lines or gaps would be evident in the displayed output.
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The output of the final stage, contour assembly, is difficult to visualize. If the

contour assembly stage produces correct output, the result will look identical to

the figures shown thus far. The difference is that the data is no longer in the form

of an unordered, potentially unrelated list of lines; instead, the lines are grouped in

ordered contours that each make a complete, gapless loop. We inspected the data

using our development environment’s debugger and confirmed that the endpoint

of any given line was the exact starting point of the next line to the full precision

allowed by single-precision floating point values. In the visual simulator for the

contour assembly process, correctly created contours are displayed in white and

all other lines from the slicing stage that have not been included in a contour are

displayed in red. Figure 5.8 shows a slice of the demo mesh after contour assembly

has been completed. This particular slice features two red lines, intentional artifacts

generated by handling of an edge case during the slicing stage on the GPU. Because

these artifact lines are removed during contour assembly, they are displayed in

red. The rest of the contour is displayed in white, showing that the contour was

created correctly.

Our evaluation plan specified that the slicer output should differ from the

original input by no more than 2% in any dimension. STL files use single precision

floating point values, as does all components of our slicer, meaning no avoidable

data loss due to precision has occurred. The precision of a single precision floating

point value is such that errors due to precision will be far less than 2% of any

original value. Our implementation never approximates lines or contours and

rounds values in exactly one location. During contour assembly, if a gap is found

between the endpoints of two lines and that gap is less than one micrometer in

length, then one of the endpoints is moved so that the gap is bridged without the

creation of a new line. That method of rounding means that any dimension could
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Figure 5.8: Screenshot of a slice from the contour assembly stage showing red
lines.

be inaccurate by up to one micron. If such an inaccuracy existed on either side of

a contour, cross section of a contour at a given point could be inaccurate by up

to two micrometers. Two micrometers is 2% of 100 micrometers, so any object

with dimensions larger than 100 micrometers will have less than 2% inaccuracy

on any dimension. Considering that the nozzle diameter, the width of the lines

that comprise a 3D printed object, of Motion View’s laser-based 3D printer is

approximately 100 micrometers, objects smaller than that are not only impractical,

but technically improbable given existing hardware. Therefore, we conclude that
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we have met our accuracy requirement for all practical inputs.

We implemented Sunder as a Windows console application according to the

specifications laid out in Chapter 3. We accept STL input files and a configuration

file and create an in-memory representation of complete, gapless contours as our

output. The configuration file supports industry-standard parameters such as

nozzle width and layer height, as well as implementation-specific parameters such

as choice of acceleration device, number of CPU threads to create for parallelization,

and whether to display the visual simulators used during development. Figure

5.7 shows that our implementation can slice meshes containing multiple discrete

objects and combine or separate contours as necessary to best represent the input

mesh. Therefore, we have met the functional requirements for the project.

Sunder properly handles failure conditions, as specified in our evaluation

plan. Modern C++ techniques have allowed us to safely use an exception-driven

error handling system in our code without causing memory leaks or other similar

resource locks. Our code actively identifies known potential problems and throws

an exception if such an issue is detected. When an unexpected exception occurs,

the same exception-processing code handles it. Either way, all resources used in the

program are properly released and the program is gracefully terminated. The user

is shown the text of the exception in the console window as well as a suggestion

to check the log file for more detailed information on the failed execution attempt.

Thus, Sunder meets our goals for failure handling.

The primary nonfunctional requirement of this project was that our implemen-

tation must be four times faster than the Slic3r slicer when using a mesh for input

that contained over 100,000 vertices and which results in over 200 slices. Both

of our test meshes meet these requirements. Table 5.1 shows a comparison of

execution times for Sunder and Slic3r slicing the test meshes. All tests were done
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Table 5.1: Execution time results and comparison.

Slicer Mesh Time in
seconds

Comparison
factor

Slic3r
demo.stl 2.56 1

20arch.stl 165.34 1

Sunder
demo.stl 1.62 1.58

20arch.stl 5.05 32.74

on the same system with the tests immediately following each other, so external

factors on the Windows system are approximately equal. The times from Sunder

were timed using a stopwatch class in the code that reported the elapsed time

in milliseconds. Slic3r only reports time for the entire slicing process including

extensions specific to 3D printing, but it does output a statement indicating when

it has completed each stage of the process. Thus, the times from Slic3r are timed

using a physical stopwatch and based on when it reports the slicing steps com-

pleted. All time values are an average of multiple timings to increase accuracy and

compensate for minor changes in outside factors. The comparison factor column is

a multiplicative value representing the factor by which Sunder is faster than Slic3r.

Thus, the comparison factors for Slic3r itself are one. Both slicers sliced the demo

mesh in negligible time, fast enough that timing Slic3r physically was difficult to

do accurately. When slicing the demo mesh, Sunder was only 1.58 times faster

than Slic3r, short of our original goal. However, when the larger 20arch mesh is

sliced, Slic3r requires 165 seconds while Sunder finishes in just over 5 seconds.

Sunder is, therefore, over 32 times faster than Slic3r when slicing 20arch, over 8

times our original performance goal. Our requirements stated that Sunder should

be over four times faster for a mesh that is larger than 100,000 vertices and 200
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slices. Since 20arch meets those requirements, we have met our performance goal,

despite the fact that Sunder is not over four times faster for every mesh of the

required size. Because the demo mesh slicing time was so low for both slicers

and because the time Slic3r requires increases so quickly for a larger input, we

suggest that Sunder meets our performance goals for any mesh large enough that

the slicing time becomes a barrier to real-world application of the slicer.

Interestingly, Sunder did not require approximately twenty times as long to

slice the 20arch mesh as the demo mesh, despite the fact that the demo mesh

is exactly twenty times the data. Our algorithms have linear time complexity,

so anything less than a linear increase implies some other factor is present in a

meaningful way. We believe that this sublinear increase indicates that a significant

portion of the execution time currently observed for Sunder is due to constant-time

overhead. Therefore, we would need to continue to increase the input size before

we would see an approximately linear increase in execution time. However, the

20arch mesh already strains the memory capacities of the GPU and consumes 20%

of our memory goal. Therefore, we believe that our time-based optimization of

the slicing process has been so effective that we have shifted the focus back to

memory usage as the most important factor preventing the slicing of larger and

more complex objects. Slic3r’s quick increase in execution time with a larger data

size, greatly exceeding a linear increase, also indicates that our linear algorithms

are superior to those employed by some slicers still used in industry.

Our final evaluation metric is memory consumption. We specified that we must

use no more than 10 GB of memory for a mesh of 100,000 vertices and 200 slices.

Sunder consumes about 243 MB of memory when slicing the demo mesh and 2.2

GB of memory when slicing the much larger 20arch mesh. Therefore, we have met

our memory consumption goals.
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Chapter 6

Conclusion

Slicing is a process vital to important problems in computational geometry, includ-

ing additive manufacturing. Additive manufacturing is rapidly gaining popularity,

and more and more fields are finding ways to take advantage of the rapid manufac-

turing it allows. In order to facilitate time-sensitive uses of additive manufacturing

and other problems that involve slicing, the slicing process must be as fast as pos-

sible. Hardware acceleration techniques using GPUs and other parallel execution

hardware are underutilized by current slicing software, leaving significant poten-

tial for faster performance. In cooperation with Motion View Software, we have

developed a slicer that utilizes new algorithms that are asymptotically-optimal in

running time and parallel execution techniques to dramatically improve slicing

performance. This allows slicing to be applied to increasingly large and complex

problems. Our future work will extend Sunder into a full slicing platform for 3D

printing, bringing new algorithms and faster parallelization to the rest of the 3D

printing process.
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