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Abstract

Theorem 1 (Fermat’s Little Theorem) Let p be a prime and a € Z* such that amodp # 0. Then
a?~' = 1modp (1)

Proof. Consider Z, = {0, 1, ...,p — 1}, we know that multiplying each element of Z, by a modulo p just gives us Z, in some
order. Since 0 x amodp = 0 we have the last p — 1 numbers of Z, multiplied by a as:

ax Z\{0} ={a,2qa,3a,...,(p — 1) a}
= {amod p,2amodp, ..., (p — 1) amod p} (2)

If we multiply all the numbers in the set we have

ax2ax3ax.x(p—1a=a""1(1x2x..x(p—1))
— (- 1) )

and
a?t(p—1)! =amodp x 2amodp x ... x (p—1)amodp (4)

Because we know that all the terms in (4) map to some unique element in Z, not 0 we have the following
a?Pp—1)=(1x2x..x(p—1))modp (5)

and
a? ' (p—1)=(p—1)modp (6)

Since (p — 1) is relatively prime to p (because p is prime) we can divide out (p — 1)! from each side of (6) to get the result:
a® ! =1modp
|
Theorem 2 An alternate form of Fermat’s Little theorem: Let p be prime and a € Z+ such that amodp # 0. Then
a? = amod p

Definition 3 Let n € ZT then we define the totient function ¢ (n) is defined to be the number of positive integers less than
n that are relatively prime to n. That is

p(n)={z:x€Z" x<n,ged(z,n)=1} (7)

Lemma 4 Let n be a prime number. Then

¢(n)=n—1 (8)
Theorem 5 Given a composit number n = p X q where p,q are prime then

¢ (n) = (p1) x ¢ (p2) 9)



Proof. Consider that the set of residues in Z, is {0,1,...,pg — 1}. Now the residues that are not relatively prime to p are

{p.2p,....(¢ — 1) p} (10)
and the residues that are not relatively prime to q are

Clearly the size of the two sets of residues not relatively prime to n are (p — 1) and (¢ — 1) plus the 0 element. So we have

p(n)=pg—[p—1)+(q—1)+1]
=pg—(p-1)—(¢—1) -1

=pg—p—q+1
=pla-1)—(¢g-1)
=-1(-1 (12)

Theorem 6 (Euler’s Theorem) Let a and n be relatively prime positive numbers, then
a®™ =1 (modn) (13)

Proof. First we not that if n is prime that the Theorem holds from Fermat’s little Theorem. Namely (13) reduces to

n

a" ' =1modn (14)

Consider the set of integers relatively prime to n:

R = {ZL‘l, ceey $¢(n)}

Multiplying the set by a modulo n gives:
S = {axl modn, ..., AT ¢(n) mod n}

We claim that S is a permutation of R. Consider that a and z; € R are relatively prime to n. Then az; must also be
relatively prime to n and ax; modn # 0. Thus all the members of S are relatively prime to n. There can be no duplicates
in S because

ar; modn = ar; modn — r; modn = x; modn

because there exists a ¢! in Z,,. But z; < n and x; < mn, so we must have that
Ti =Ty
and we have that there are no duplicates in S. Therefore S is a permutation of R. Consider

#(n) é(n)

H (az; modn) = H x;

i=1

Then
@(n) #(n)

H ar; = H x; (mod n)

i=1 i=1

Which gives

Now since Hf):(q) x; is relatively prime to n, we can cancel on each side to get the result
a®™ =1 (modn)
]

Theorem 7 Alternate form of Euler’s Theorem: Let a and n be relatively prime positive numbers, then

a®™M*! = g (modn)



Corollary 8 Let n = pq and m be integers where p and q are prime numbers and 0 < m < n. Then
mem+1 — (=D (e—D+1 — ) (mod n)

Theorem 9 (CRT) Let S = {m1,...,my} and

where for all m;,m; € S, ged (m;,m;) =1 (that is they are pairwise relatively prime). We can represent any integer in Zy,
by the k—tuple whose elements are in Z,,,. That is we have a bijection:

A+ (aq,...,ax)

Proof. Define
a; = Amodm;

Let

so that the following condition holds:
M; = 0 (mod m;)

Since M; is relatively prime to m; we define the following;:
c; = M; x (J\Jf1 modmi) for1 <i<k
We claim that the following holds, but why we have no idea!

k
A= (Z aici> mod M

=1



