Size: 1502
Comment:
|
← Revision 3 as of 2020-01-26 23:19:07 ⇥
Size: 287
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 3: | Line 3: |
{{{#!latex \usepackage{amsmath}% \setcounter{MaxMatrixCols}{30}% \usepackage{amsfonts}% \usepackage{amssymb}% \usepackage{graphicx} \usepackage{geometry} \newtheorem{theorem}{Theorem} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in} %%end-prologue%% From http://mathworld.wolfram.com/AbsorptionLaw.html\bigskip |
From [[http://mathworld.wolfram.com/AbsorptionLaw.html]] |
Line 39: | Line 6: |
\[ a \wedge ( a \vee b ) = a \vee (a \wedge b) = a \] |
$$a \wedge ( a \vee b ) = a \vee (a \wedge b) = a$$ |
Line 43: | Line 8: |
for binary operators $\vee$ and $\wedge$ (most commonly as logical OR / AND).\bigskip | for binary operators $$\vee$$ and $$\wedge$$ (most commonly as logical OR / AND). |
Line 45: | Line 10: |
In this sense, $a$ absorbs $b$. }}} |
In this sense, $$a$$ absorbs $$b$$. |
AbsorbtionLaw
From http://mathworld.wolfram.com/AbsorptionLaw.html
The absorbtion law states: $$a \wedge ( a \vee b ) = a \vee (a \wedge b) = a$$
for binary operators $$\vee$$ and $$\wedge$$ (most commonly as logical OR / AND).
In this sense, $$a$$ absorbs $$b$$.